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The problem of determining the acoustic properties of dilute bubbly liquids is 
examined using the method of ensemble-averaged equations and pairwise inter- 
actions. The phase speed and attenuation of sound waves in the small-amplitude 
regime are determined as a function of frequency of sound waves including the effects 
of finite surface tension, small viscosity of the liquid, and non-adiabatic thermal 
changes, and compared with the experimental data available in the literature. An 
excellent agreement is found for frequencies smaller than about 1.3 times the natural 
frequency of the bubbles, but the discrepancy is substantial at larger frequencies. 

1. Introduction 
The presence of gas bubbles dispersed in a liquid affects rather profoundly the 

acoustic behaviour of the liquid. For example, while the speed of sound in pure water 
at ordinary temperatures and pressures is approximately 1500 m s-l, its speed, under 
similar conditions of temperatures and pressures and at relatively low frequencies, in 
water containing 5 % by volume of air bubbles is only about 60 m s-l, which is even 
lower than the speed of sound in pure air (330 m s-l). The reason for such a drastic 
effect is now well understood. The speed of sound in the medium depends roughly on 
the product of the compressibility and the density of the medium. Since the former 
is primarily determined by the amount of gas bubbles and the latter by the amount 
of liquid, the resulting speed of sound in the mixture is quite different from that of 
the pure liquid or the pure gas. 

A number of investigators have studied theoretically the problem of acoustic wave 
propagation in bubbly liquids, both in the linear small-amplitude regime and the 
weakly nonlinear regime, when the volume fraction /3 of the gas bubbles is small 
compared to unity (Foldy 1945; Carstensen & Foldy 1947; Twerski 1962; Batchelor 
1969; van Wijngaarden 1972; Caflisch et al. 1985a, b ;  Prosperetti & Kim 1989). 
Foldy (1945) treated the bubbles as point scatterers and gave the following 
expression for C,,, the speed of sound in the mixture : 

where C ,  is the speed in pure liquid, pL is the density of the liquid, y is the ratio of 
the constant pressure and constant volume specific heats of the gas, P, is the 
equilibrium pressure in the gas bubbles, and w, is the ratio of the frequency w of the 
sound wave and the adiabatic natural frequency o, of the gas bubbles given by 
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R being the radius of the bubbles. For most gas-liquid mixtures, the coefficient of /3 
in (1.1) is much greater than the 0(1) term. For example, for an air-water mixture 
a t  atmospheric pressures, the ratio pLCk/yPe is 0(104) and, therefore, unless /3 is 
smaller than lW4, the speed of sound in the mixture deviates significantly from that 
of the pure liquid. 

I n  deriving ( l . l ) ,  surface tension and viscosity effects were neglected and the gas 
bubbles were assumed to undergo adiabatic volume changes. The effects of these 
variables have also been studied by several investigators and the reader is referred 
to the review articles by van Wijngaarden (1972) and Prosperetti (1984) for details. 
We also note that there is actually a correction of O ( p )  multiplying l/Ck in (1 .1)  but, 
in view of the fact that l/C; 4 p,/yPe, this correction is of no practical significance. 

The earlier theoretical results were obtained based on somewhat heuristic grounds 
and it was not clear under what quantitative conditions these results were correct. 
Recently, Caflisch et al. (1985a, b )  have presented a method of two-scale 
homogenization to derive rigorously the equations that describe the acoustic 
behaviour of bubbly liquids on a macroscale, i.e. on a lengthscale large compared to 
the radius of the bubbles, by starting from the equations of motion satisfied by the 
individual phases on the microscale. Using this method, these investigators have 
determined exact conditions under which various expressions apply. In  particular, 
they have examined carefully the limits w,  + 0 and /3 + 0. 

As a result of the pressure variations in the acoustic wave, and owing to the 
unequal densities of the gas and liquid, the bubbles undergo both radial and 
displacement oscillations. When /3 is very small but w, is O( l),  Caflisch et al. (19854 
found that the O ( p )  term given by the Foldy approximation (1.1) is correct and that 
the primary mode of the bubble oscillations is radial. In  this limit the pressure 
around each bubble is approximately uniform and the disturbance in the velocity 
potential or the pressure around each bubble may be approximated by a monopole 
situated a t  the centre of the bubble. These investigators, however, did not specify the 
order of magnitude of the error in (1 .1) .  On the other hand, when /3 is 0(1) and 
w, + 0, Caflisch et al. (1985 b )  found the primary mode of the bubble oscillations to 
be the volume-preserving displacement oscillation. In  other words, the disturbance 
velocity potential or the pressure around each bubble may be approximated, to  the 
leading order, by a dipole situated at the centre of the bubble. This result can be 
explained physically as &llows. When the frequency is small, the temporal variations 
in pressure occur slowly, and so the radial velocity a t  the surface of each bubble and 
the strength of the monopole are small in magnitude. However, since the bubbles 
have density different from that of the liquid, the ratio of their displacement 
acceleration to  the mixture acceleration remains finite even as w, + 0. I n  this case the 
Foldy approximation given by (1.1) with w, = 0 is still valid and the correction, 
which is 0(/3'), was explicitly determined by Caflisch et al. (19853) (cf. (3.40)). The 
term (/3p,)/(yPe( 1 - w:) )  in the Foldy approximation is actually a sum of two terms : 
(/3pL)/(yPe), which represents the compressibility of the medium, and [(/3p,)/(yPe)] 
[(w:)/(l-w;)], which is proportional to the strength of monopole. Since the 
compressibility of the gas bubbles plays a very significant role in determining the 
speed of sound, the first term in the Foldy approximation is always valid when /3 is 
small. It is only when one considers the corrections to it for higher p-values that the 
leading dipole-like behaviour of the bubbles become important in the case of w, --f 0. 
Once again, although the correction to (1 .1)  is exactly specified in this case, Caflisch 
et al. (1985b) did not provide any quantitative criterion for how small w, must be in 
order that this approximation to ( 1 . 1 )  becomes valid. 
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The homogenization method has also been applied in recent years to  the problem 
of determining the viscous and thermal attenuation of sound waves due to non-zero 
viscosity and non-adiabatic expansions and to examine the effect of finite surface 
tension resulting in deformation of the bubbles from the spherical shape (Miksis & 
Ting 1986, 1987a, b ) .  

In  all of the studies mentioned above, only the interaction of a single bubble with 
the medium was employed in determining the behaviour of dilute bubbly liquids, an 
exception being the work of Rubinstein (1985) who considered the special case of 
bubbles arranged in a periodic array and determined the first, O(&, correction to  the 
Foldy’s expression. When the spatial arrangement of bubbles is random and p larger 
i t  is necessary to examine the interaction of a pair of bubbles as has been done in the 
determination of the other macroscopic properties of suspensions, such as effective 
conductivity, sedimentation coefficient, and effective permeability (Jeffrey 1973 ; 
Batchelor 1974; Howells 1974). It is surprising, however, that  in spite of well 
developed techniques for analysing such interactions, no attempts seem to have been 
made in the literature to analyse the acoustic behaviour of non-dilute bubbly liquids 
in a rigorous manner. In  this paper we employ the method of ensemble averages 
developed by Hinch (1977) to provide a relatively simple and less formal alternative 
to  the two-space homogenization method for deriving the macroscale behaviour of 
bubbly liquids. The method is particularly suitable for incorporating pairwise 
interactions among bubbles when the finite-wavelength effect is important or for 
incorporating the results of large-scale numerical multi-particle calculations which 
are now made possible because of the improved computational resources. The results 
of such numerical calculations will be presented in a future paper ; here we use the 
method to determine the correction to (1 .1)  in terms of p for finite w,. Since the O(p) 
correction in (1.1) is usually much larger than the 1/CZ, term for p-values that are not 
exceedingly small and for w, not much greater than unity, we may ignore the O(1) 
term in (1 .1)  for the purpose of higher-order calculations. This amounts to  treating 
the liquid as incompressible and the bubbles as the sole source of compressibility of 
the mixture. As a consequence, the subsequent corrections to (1 .1)  have a much 
different dependence on /3 than what would have been obtained had the bubbles been 
viewed as making only O ( p )  changes in the effective properties of the mixture over 
those of the pure liquid. 

1.1.  A summary of important results 
For the benefit of a reader who is not interested in the details of the mathematical 
analysis, and in view of the length of the article, we summarize here some of the 
important findings. 

I n  $2, we present the governing equations for inviscid and adiabatic changes due 
to  a pressure wave propagating through a mixture of liquid and gas bubbles. The 
ensemble-averaged equations of continuity and momentum conservation are derived 
and i t  is shown that the effective speed in the mixture can be evaluated in terms of 
four coefficients A,, A,, A,,, and AVm. Of these, the first two are the most important 
ones in determining the speed. The coefficient A, may be interpreted as the ratio of 
the amplitude of the pressure variation in the gas phase to that in the mixture, and 
the coefficient A, as the ratio of the amplitudes of the gas and mixture velocities. 

In  $3.1, we determine the above four coefficients to O(1) by examining the 
interaction of a single bubble with the pressure wave and thereby recover Foldy’s 
approximation (1.1) with a few minor modifications accounting for the finite surface 
tension and the finite compressibility of the liquid. Although these modifications per 
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se are not of great practical significance, the derivation has some methodological 
interest and the details of the calculations aid later calculations in incorporating the 
effects of finite wavelength. The finite compressibility of the liquid renders C,, a 
complex quantity indicating an attenuation of sound waves even in the absence of 
viscous and non-adiabatic thermal effects due to what is known as the acoustic 
radiation damping: the energy of sound waves is stored in part as elastic energy in 
the liquid and then converted back into the kinetic energy resulting in a phase 
difference between the pressure fluctuations in the gas phase and the mixture. (This 
makes A ,  and, hence, C,, a complex quantity.) 

In  $3.2, we determine the corrections to (1.1) that are of O(p) or larger. The 
analysis is restricted to the values of /3 that  are small compared to  unity but large 
compared to yPe/pL CZ,. In  this limit, the liquid may be regarded as incompressible 
and the estimates of A, correct to  O(p) and A,, and A,, to  O( 1) are needed. Thus, this 
section is concerned mainly with the determination of A,  correct to O(p)  by 
accounting for the pairwise interactions among bubbles. A straightforward method 
of doing this by determining the change in the pressure amplitude inside a given 
bubble due to  the presence of a second bubble at a distance S from i t ,  multiplying 
this change by the probability of finding the second bubble at that distance, and 
integrating over the all possible S cannot be applied to  determine this O(p)  correction 
as the second bubble modifies the pressure in the given bubble by an O(R/S) amount 
when S is large, making the resulting integral diverge. The use of ensemble-averaged 
equations as suggested by Hinch (1977) avoids such convergence difficulties. Using 
this rigorous method, we show that the calculation of A ,  correct to O(p) can be 
decomposed essentially into two parts. The first part consists of determining the 
pressure inside a single bubble placed in an effective medium whose compressibility 
is determined by the amount of bubbles in the mixture, and the second part consists 
of determining the effect of the presence of a second bubble. It is shown that the first 
part already accounts for the first two reflections, i.e. the terms of O(R/S) and 
O((R/S)2 )  in the two-bubble interactions, and thereby the remainder is now 
integrable (see further discussion on this in the next paragraph). The leading 
correction to A,, which results from the first part, is shown to be O(@) and this 
contributes mostly to the acoustic radiation damping. The magnitude of this 
damping is shown to be proportional to wR/CeP compared with the magnitude URIC, 
reported in earlier studies. Since C,, can be an order of magnitude or more smaller 
than C,, this finding is quite significant and, in fact, responsible for predicting the 
attenuation values for sound waves near the resonance frequency of bubbles that are 
in a very good agreement with the experimental data available in the literature. 

As mentioned above, the second part of the calculation requires integrating the 
pairwise interaction effect with the first two reflections omitted. The effective 
wavelength in the mixture is large, of O ( R P ) .  If we take this wavelength to be 
infinite, then the pressure felt by the two bubbles is exactly the same and 
consequently the third reflection in the two bubbles interacting in an incompressible 
liquid behaves as (RIAS)~ for large S, making the resulting integral diverge 
logarithmically. The fact that the wavelength is finite, however, makes the pressures 
in the two bubbles slightly different from each other and accounting for this fact 
results in an O(p1nP) correction to A,. 

To evaluate the 00) correction to A,, we need to  integrate the two-bubble 
interaction effect with the first three reflections omitted. This effect decays as (R/S)4  
for large S and the effective wavelength may be taken to  be infinite in evaluating it. 
The details of the two-bubble interactions are given in Appendix A. A pair of bubbles 
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resonates in two different modes. The first mode corresponds to the two bubbles 
resonating in phase with each other and the second corresponds to the two bubbles 
resonating 180' out of phase with each other. The frequencies a t  which they resonate 
depend on the separation distance between the bubbles. For example, when the non- 
dimensional surface tension cr* = a / ( p ,  R3w2) is large, two widely separated bubbles 
resonate at the frequency w, corresponding to the resonance of isolated bubbles and 
two bubbles in close contact resonate at  about 0 . 8 3 ~ ~  in the in-phase mode and at  
an infinite frequency in the out-of-phase mode. In other words, when the surface 
tension is large and when 0 . 8 2 8 ~ ~  < w < co, there is always a pair of bubbles in the 
mixture that is resonating either in the in-phase mode or in the out-of-phase mode. 
This suggests that the resonance effects in pairs of bubbles may play a very 
significant role in the acoustic properties of bubbly liquids for a fairly wide range of 
frequencies. In Appendix A, we show that the magnitudes by which the in-phase and 
the out-of-phase modes are excited are proportional, respectively, to the mean and 
the difference of the pressures felt by the two bubbles. Now the latter, being inversely 
proportional to the effective wavelength of the mixture, is a small, O ( p ) ,  quantity 
compared to the former and hence in determining the leading-order pairwise 
interaction effect, i.e. in calculating the O(p) correction to A,, only the in-phase mode 
resonance is important. The out-of-phase mode is important in the next, O ( @ ) ,  
correction to A,, but we have not pursued its evaluation in the present study. 
Likewise, the three-bubble interaction will exhibit even more complex resonance 
behaviour in the 0(p2) and higher-order corrections to A,. 

The constant 0.83 in the above discussion corresponds to the resonance frequency 
of two nearly touching bubbles undergoing in-phase radial mode resonance when the 
surface tension is large. Here, by radial we mean the volume oscillations that result 
from temporal variations in the pressure around the bubbles. This constant decreases 
as the surface tension is lowered and, in fact, becomes zero for cr* = &. At this value 
of cr*, the P2 component of the shape of the second bubble is strongly affected and 
this, in turn, causes the radial oscillations of the first bubble to become very large 
even at zero frequency. Here, P2 is the second Legendre polynomial. Similarly, the 
other components of the shape deformation also cause the radial resonances a t  zero 
frequency. It may be noted that these effects of finite surface tension and shape- 
dependent resonances occur in the O(p) correction to A, and not in the O( 1)  estimate 
that gives the Foldy's approximation (1.1). This is because the radial oscillations in 
a bubble are affected by the surface tension only when there is a second bubble in its 
vicinity which is undergoing large shape deformations. 

Although these resonance effects of pairs of bubbles are interesting, our detailed 
calculations of the 0(/3) coefficient of A, suggests a rather weak influence. This can 
be explained as follows. Let us consider the case of large surface tension and let w be 
greater than 0 . 8 3 ~ ~ .  Then there exists a critical separation distance, say S,, for pairs 
of bubbles to undergo a resonance at this frequency. The bubbles with a separation 
distance less than S,  are already past their resonance frequency and so the pressure 
in such bubbles is 180' out of phase with the mixture pressure. (Note that A,, which 
is a ratio of the pressure amplitude inside the gas phase to that in the mixture, to the 
leading order is given by 1/( 1 -w,") and this implies that the pressure inside the 
bubbles is negative or out of phase with respect to the pressure in the mixture when 
the frequency is larger than the resonance frequency.) On the other hand, the bubbles 
with separation distance greater than S, have resonance frequencies larger than w 
and so the pressure inside them is positive or in phase with the pressure in the 
mixture. In determining the O(p) correction to A,, we must integrate the pressure 
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inside the gas phase for all possible separation distances and our calculations then 
show that the effect of large positive pressures for S slightly greater than 8, is 
cancelled by the large negative pressures for S less than S,, resulting in a finite 
contribution to A, for most frequencies. Only when w equals 0.83wC, corresponding 
to pairs of bubbles in contact with each other resonating, is there a divergence in A, 
and this divergence is shown to be logarithmic only and thus weak. This calculation 
is carried out in the limit of vanishingly small damping due to viscous and thermal 
effects. It is shown that, while the real part of A,  remains finite for w > 0 . 8 3 ~ ~  due 
to the cancellation effects of resonances, the imaginary part becomes relatively large 
indicating a large attenuation due to the resonance of pairs of bubbles in the limit of 
vanishingly small viscous or thermal damping. 

In  $3.3, we examine the acoustic behaviour for frequencies small compared to w,. 
In this case the temporal variations in the pressure are occurring so slowly that the 
pressure inside the gas phase is essentially the same as the pressure in the mixture 
and A, is approximately unity for all values of @. The calculations of $3.2 for A,  
correct to O(@) indicate that taking A,  to unity is likely to result in an error in 
effective speed of less than a few percent whenever w, = w / w ,  is less than 0.3. I n  this 
case it turns out that  C;,Z can be determined to O(p”) by determining A, correct only 
to O(@).  Thus, $3.3 is primarily concerned with the determination of A, correct to 
O(p) in the limit of small w,. To the leading order, i.e. to 0(1),  A,, which can be 
interpreted as the ratio of the velocity in the massless bubble to the mixture velocity, 
equals 3 and is independent of the surface tension. The O(p) correction, which is 
to be evaluated from pairwise interactions, is, however, dependent on a*. The 
calculation of A, is closely related to that for determining the added mass coefficient 
for bubbles in an inviscid liquid. The O(p) correction to  the added mass coefficient for 
the case of a* = co corresponding to spherical bubbles has been determined by van 
Wijngaarden (1972). We confirm his result and determine the O(p) correction for the 
entire range of CT*. In  particular, we find once again resonance effects among pairs of 
bubbles for a* less than 0.11. These effects arise from the excitation of the shape 
deformation resonance of the second bubble due to the uneven pressure distribution 
created by the presence of the first bubble and which, in turn, giving rise to the 
resonance in the velocity or the displacement of the first bubble. It is shown that in 
the limit of u* -+ 0, the O(p) coefficient of A, goes through a countably infinite number 
of discontinuities. The divergence at each of these discontinuities is shown to be only 
logarithmic and thus rather weak. 

A comparison between the predicted values of C,, and the experimental data of 
Micaelli (1982) is made a t  the end of $3.3. This comparison is limited to small or 
where the determination of A, is the most significant. An excellent agreement 
between the theory and experiments is found for @-values of about 0.2, up to which 
the experimental data are available. A comparison with the experimental data at 
large frequencies is made in $5  and this is discussed later. 

Since the consideration of pairwise interactions under small-amplitude conditions 
resulted in the resonance behaviour for a fairly wide range of frequency and surface 
tension, it is important to  assess how much these resonances will be damped by the 
viscous and non-adiabatic effects that  are usually present. The damping due to these 
effects is also significant under most experimental conditions and thus they must be 
analysed before a comparison between the theory and experimental data on 
attenuation can be made. Thus $§4 and 5 are devoted to these effects and a 
comparison with the experimental data on attenuation by Silberman (1957) is made 
a t  the end of $5.  
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In $4, we examine in detail the effects of small viscosity on the coefficients A, and 
A, and on the ensemble-averaged momentum equation. The non-dimensional 
viscosity ,LA* 3 p/(pLwR2) is usually small in most practical applications and so the 
analysis is confined to this case. Thus the effect of viscosity is essentially confined to 
a thin Stokes layer near the surface of each bubble. A method is developed to  account 
for this effect for pairwise bubble interactions. We have examined only the case of 
gas-liquid systems which are relatively free of the surface-active impurities. For such 
systems the appropriate boundary condition at  the surface of the bubbles is a 
continuity of tangential stress. In a separate study, Sangani, Zhang & Prosperetti 
(1991) have examined the case of relatively small bubbles in the presence of surface- 
active impurities for which the appropriate boundary condition at  the surface of the 
bubbles is the no-slip condition. 

Section 5.1 deals with the study of non-adiabatic effects. As a result of pressure 
variations, there are temperature variations in the system and thus there is an 
exchange of energy between the gas and the liquid phase. The surface area of the 
bubbles is slightly greater when the bubbles expand and thus there is a greater 
exchange of energy when the bubbles expand than when they contract and 
consequently there is a net exchange of energy between the two phases during one 
cycle giving rise thereby to the attenuation of waves. The thermal diffusivity of the 
liquid is usually much larger than that of the gas and so the thermal effects are 
important only inside the bubble. Moreover, only the spherically symmetric part of 
the pressure and velocity inside the bubble is affected by the presence of the bubbles. 
This makes it relatively easy to include the thermal effects in the pairwise 
interactions calculations. 

It may be noted that since the thermal effect is closely dependent on the volume 
oscillations, it becomes relatively less important a t  small frequencies. The acoustic 
radiation damping which is inversely proportional to the effective wavelength of the 
sound waves in the mixture is also small a t  small frequencies. Thus the viscous 
damping is the only effective mechanism at small frequencies and the resonance 
effects in A, for small frequencies described in 53.3 can only be damped by the viscous 
effects. The detailed calculations in $4 with some representative values of p*, 
however, suggest that the displacement resonances are only slightly damped by 
viscosity. Thus the presence of these resonances could give rise to a relatively large 
scatter in the measurement of the effective speed a t  small frequencies if cr* is less 
than about 0.15. 

Section 5.2 is concerned with the comparison between the theory and experimental 
data on the attenuation of sound waves for frequencies comparable with the 
resonance frequency of isolated bubbles. First, a summary of the various expressions 
derived in the present study including the viscous and thermal effects is given. The 
relative magnitudes of these effects for an air-water system with bubbles of diameter 
5 mm are given. The O(P1nP) and O(P) corrections to A ,  determined in the present 
study turned out to be of large magnitude for w, comparable to unity and so the 
expressions for C,, are recast in a different form in order t o  yield finite estimates of 
C,, and attenuation for the complete range of w,. 

Most of our discussion so far applies to the case when 0, is less than unity. As the 
Foldy’s approximation (1.1) suggests, the effective speed is not a real quantity even 
in the absence of thermal, viscous, and acoustic radiation effects when w, > 1. This 
is because the pressure variations in the bubbles become out-of-phase with the 
variations in the mixture a t  frequencies larger than the natural frequency of the 
bubbles. Thus, the bubbles behave as though they have a negative compressibility. 
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The compressibility of the liquid being negligible, this implies a negative 
compressibility of the medium and, consequently, the intensity of sound waves 
decays exponentially in the medium. Of course, a t  sufficiently large w,, given 
approximately by wf x /3pL C i / (  yP,), the compressibility of the liquid becomes 
important and the attenuation of sound waves in the absence of other damping 
mechanisms then becomes vanishingly small and the speed of sound approaches that 
of pure liquid. 

The expressions for the attenuation derived in the present study are compared 
with the data from Silberman as they are believed to  be the most reliable in terms 
of the uniformity of the size of bubbles. There is an excellent agreement between the 
theory and experiments for frequencies close to and smaller than the resonance 
frequency of the bubbles. Under these experimental conditions, it turned out that 
the thermal damping was of sufficiently large magnitude to suppress the resonance 
effects of pairs of bubbles that are discussed in $3.2.  The new magnitude of the 
acoustic radiation damping found in the present theory seems to be the most 
important factor in achieving the good agreement between the theory and an 
experimental value for w, of about 0.9. 

The theory, however, does not seem to give good agreement with the experimental 
data a t  larger frequencies and the reason for this is not fully understood a t  present. 
A discrepancy by as much as a factor of 2 remains for larger frequencies. Whether 
this discrepancy is as a result of some attenuation mechanism that is overlooked, or 
because of large scatter in experiments that  is possible a t  such large frequencies and 
because of the pair resonance effects, or simply the effect of multi-bubble interactions 
that is not accounted for adequately by the dilute theory examined here remains to  
be further investigated. As mentioned earlier, we expect the out-of-phase-mode 
resonance effects to  become important whenever w, is greater than unity. These 
effects appear in the O(@)  correction to  A, which we have not evaluated, but it is quite 
plausible that these effects are important for p = 0.01. It is also possible that such 
resonance effects may produce a larger scatter in the experimental data making them 
unreliable. We are currently calculating the effective speed and attenuation by direct 
numerical simulation of the multi-bubble interaction effects without making any 
assumption about the smallness of p. The results of these calculations will provide 
the answers to some of these questions. 

2. The governing equations and the ensemble averages 
2.1.  The governing equations 

Let us consider sound waves propagating through a liquid in which bubbles of equal 
size are homogeneously dispersed. The viscosities of the liquid and gas are small and 
the intensity of sound waves is sufficiently small so that the nonlinear terms in the 
equations of motion can be linearized. The equations of mass and momentum 
conservation in both the liquid and gas phases then simplify to 

where p is the density, t is the 
density derivative in (2.1) can 

au 
p-+vp = 0, 

at 

time, u is the velocity, and p is the pressure. The 
be expressed in the usual manner in terms of the 
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pressure derivative by the introduction of a compressibility factor +/ap evaluated 
at  a constant entropy s for reversible adiabatic changes, which we shall assume is the 
case. The effects of viscosity and non-adiabatic changes will be examined separately 
in 554 and 5. Thus (2.1) can be expressed as 

The compressibility factors for the pure liquid and the gas, assumed to be ideal, are 
well known and can be expressed by means of a single expression 

where g(x,  t )  is a generalized function of the position coordinate and time whose value 
is unity for x inside the gas bubbles and zero for x in the liquid. Similarly the density 
in the momentum equation (2.2) can be expressed as 

P = P L  + ( P G - P L )  d X ,  t ) ,  (2-5) 

where pG is the density of the gas. For most gas-liquid systems, p, is small and, 
therefore, we shall take it to be zero. 

The boundary conditions are the usual kinematic and stress conditions at the 
surface of the bubbles. The normal component of the velocity is continuous across 
the interface and is related to the deformation of the bubbles by the kinematic 
condition 

-- - n-u ,  
at 

where n is the unit normal at  the interface and 7 is the deformation of the bubble 
from its equilibrium size. In other words, the surface of a representative bubble, with 
its centre taken as the origin, is assumed to be given by r = R+T,J. The stress 
boundary condition is 

where p ,  and p ,  are the pressures on the two sides of the gas-liquid interface and u 
is the surface tension, which we shall assume to be uniform over the entire surface 
of the bubble. Since the intensity of the sound is small, we are interested in 171 4 R,  
so that we may write 

p , - p ,  = aW-n, (2.7) 

where V,Z denotes the surface Laplacian operator. For the purpose of the calculations 
later we find it convenient to decompose 7 in the Legendre polynomials P z  as 

m n  
T,J = x x T , J ~ , P ~ ( C O S ~ ) ~ ~ ~ ~ ,  

n-0 m--n 

where 8 and Q are the spherical polar angles measured with respect to the centre of 
the bubble. Since pG = 0, it can be seen from (2.2) that the pressure inside the gas 
bubbles is uniform. Therefore, using the adiabatic law, p P  = const., we find that yo, 
is related to p ,  by 

p,-Pe = -- 3 ~ ~ 0 0 ~ ~ .  
R (2.10) 
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Using the well-known identity 

we can express the dynamic condition as 

(2.12) 

where p n m ( r )  are the coefficients of the Legendre polynomials in the expansion of 
p ,  - P around the centre of the bubble and P is the equilibrium pressure in the liquid 
given by P = P e - 2 a / R .  

Since the governing equations are linear, it  is convenient to analyse the acoustic 
behaviour for various frequency components separately. Thus we may assume that 
the velocity, pressure, and deformation are all proportional to eiWt. The dynamic and 
kinematic conditions a t  the undeformed surface of the bubbles may then be 
combined into a single equation for the Legendre components of the pressure on the 
liquid side of the interface by introducing a velocity potential q ~ ,  with u = V ~ I  and 
p = -iwp,qI, and eliminating rnnz from (2 .6)-(2.8)  and ( 2 . 1 2 ) :  

p , ,  = ~ * [ 2 - n ( n +  l ) ] R p ; ,  for n > 0 and w ~ p , , + R p ~ ,  = 0, (2 .13)  

where u* = U/pL R3w2 is the non-dimensional surface tension, the prime indicates the 
radial derivative of pressure components evaluated a t  the undeformed bubble 
surface on the liquid side, and w, is the ratio of w and the natural frequency w, of the 
bubbles defined by 

2U 
with y* = y-- 

P L R 2  3RP, ' 
3~ *Pe = - (2 .14)  

Note that we have modified slightly the original definition of the natural frequency 
(cf. ( 1 . 2 ) )  to  account for the finite surface tension. The quantity 2cr/(RPe) = 2/We,  
where We is the Weber number, is always less than 1 so that y > y* 2 y-$.  If we 
take u = 70 dynes/cm, a typical value for pure water, and assume P, to equal the 
atmospheric pressure, then y* differs from y by less than 5% whenever R is greater 
than l o p 3  cm. It should also be noted that the non-dimensional surface tension u*, 
which is a function of frequency, may also be expressed in terms of the Weber 
number as U* = 1/(3Wey*w;).  Since We is large in many practical situations, we shall 
treat r ~ *  as an O(1)  quantity even when w, is small. 

This completes the description of the governing equations. 

2.2.  The ensemble-averaged equations 

We now proceed to derive the ensemble-averaged equations for the velocity and 
pressure fields. We shall denote the unconditionally averaged pressure and velocity 
fields by p ,  and u,, and conditionally averaged fields with the centre of a bubble fixed 
at  x1 by p ,  and u,, etc. The ensemble average of a product of two quantities or more 
will be denoted by enclosing it in a curly bracket. We note that, with the introduction 
of the generalized function 9,  (2 .1)  and (2 .2) ,  together with (2 .4)  and ( 2 . 5 ) ,  are valid 
a t  all points in the medium except a t  the interface, where we must supplement these 
equations with the kinematic and stress conditions before taking the ensemble 
averages. Alternatively, the ensemble-averaged equations for the mixture can also be 
obtained by first writing the ensemble-averaged equations for the individual phases 
and then combining them. The latter procedure is easy to implement and can also be 
employed in a relatively straightforward manner to derive the averaged equations 
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when the deformations are not small. Thus, for example, multiplying (2.3) with g, 
using (2.4) to evaluate the density derivative in the gas phase, and then taking the 
unconditional ensemble average yields 

- g -  + { g v . u , } o = o .  
YP, { (2.15) 

A similar equation can be obtained for the liquid phase by multiplying (2.3) with 
1-9, and adding the two equations then yields 

L{ (1 -9)  %}o +$-{ g%}o + {( 1 -9)  V .  uLl0 + (gV - uGl0 = 0. (2.16) 
P L  (7; 

The ensemble-averaged pressure is given by 

and a similar equation applies to u,. In terms of these two average quantities, (2.16) 
can be expressed as 

(2.18) 

Similarly, the ensemble average of the momentum equation (2.2) with pG = 0 yields 

+Vp,+{(P,-p,)Vg}, = 0. (2.19) 

Now Vg may be evaluated from 

vg = -nS(x-x , ( t ) ) ,  (2.20) 

x,( t )  being points on the interface, and a g / a t  from 

- ag = - u * v g  = n.ufqx-x,(t)), (2.21) 
at 

which is valid in the absence of any mass transfer or phase change at the interface. 
Since uG.n = uL-n a t  the interface, i t  can be easily shown, on using (2.20) and (2.21), 
that the terms involving uL-uG in (2.18) and (2.19) vanish. The remaining terms 
depend on the details of the spatial configuration of the bubbles and we shall 
evaluate them for the case of small deformations and small volume fraction /3 of the 
gas bubbles. To evaluate these terms, we first solve for the conditionally averaged 
pressure and velocity fields with one bubble fixed for small /3 and then use relations 
such as 

(2.22) 

where P ( x l )  is the probability density for finding a bubble at  x ,  occupying the region 
V, such that x lies inside the bubble. Since P ( x l )  is proportional to p, the 
unconditionally averaged momentum and continuity equations (2.18) and (2.19) can 
be evaluated to O(p) by determining the conditionally averaged pressure and 
velocity correct only to O( 1). 

If we assume that the bubbles’ spatial distribution is isotropic on a macroscale, 
then the integral in (2.22), being scalar, can depend only on scalar quantities such as 
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p, ,  Vzp,,  V4p0, V 'U, ,  and V2(V.u,) .  However, since we anticipate that p ,  will satisfy 
a wave equation for the case of small deformations, Vzp,, etc. are linearly related to 
p, ,  and since V-u,,  etc. are also expected to be linearly related top, (cf. (2.27), (2.28)), 
we can write quite generally that 

aP0 (4 = P A , , t ( x ) ,  

(4 = P A , , t ( X ) ?  

where A, is a function of P and w. Using similar arguments we write 

au0 

aP 
( P L - P d -  (x) = P A U C $ ( X ) >  i 3, 

{ ( P L - P G ) ~ ~ ) ~  ( X I  = PAcmV~o(x), 

where A,, A,,, and A,, are other constants that also depend on P and w. 
Substitution of (2.23)-(2.26) into (2.18) and (2.19) then yields 

au 
P L ( 1  -PA,) $+ (1 + PA,,) Vpo = 0, 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

from which it is easy to show that both p ,  and u, satisfy the wave equation and that 
the speed of sound in the mixture is given by 

(2.29) 

Thus we see that to determine the speed of sound correct to O(P),  we must estimate 
the coefficients A,, A,, A,,, and A,, correct to O(1). It may be noted that since p, ,  u,, 
and their derivatives are all linearly related to each other, there is a slight 
arbitrariness involved in defining these coefficients via (2.23)-(2.26). Since the 
resulting averaged continuity and momentum equations (2.27) and (2.28) are 
homogeneous, we can determine the average pressure and velocity only to within a 
multiplicative constant by solving these equations. The dispersion relation, i.e. the 
relation between C,, and w ,  on the other hand is unique and does not depend on what 
definitions we employ to evaluate various average quantities appearing in 

It may be noted that the spatial distribution of the bubbles in many practical 
situations such as the bubbles rising under the influence of buoyancy forces is likely 
to be anisotropic and for such cases the speed of sound will depend on the direction 
of its propagation. Relations such as (2.23)-(2.26) are not valid in such situations 
and perhaps it is most convenient to first evaluate quantities such as {gap,Jat}, by 
taking p o ( x )  = P +ia exp (iwt - ik - x )  and u, = ria exp (iwt - ik. x )  and determining 
the effective wavenumber k and hence Ce,(k/k) from the averaged continuity and 
momentum equations (2.18) and (2.19). This procedure is illustrated in Appendix B 
where we have briefly examined the effect of buoyancy. In the main text of the paper, 
however, we shall continue to use the coefficients A,, etc. as it is convenient to refer 
to various averaged quantities such as {g 3pG/at}, in terms of suitable coefficients. 

(2.23)-(2.26). 
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3. Estimates of the coefficients appearing in (2.29) 
3.1. Calculations of A,, A,, A,,, and A,, to O(1) 

I n  this section we shall obtain the 0(1) estimates of the coefficients appearing in 
(2.29) and thereby determine C;: correct to  O ( p ) .  The analysis will recover Foldy’s 
approximation (1  . I )  with a few minor modifications accounting for the effect of finite 
surface tension and compressibility of the liquid. As mentioned in the Introduction, 
although these modifications by themselves are not of much practical significance, 
the methodology will have some interest and the calculations will be needed in the 
subsequent sections when we determine the higher-order corrections to 15‘;;. 

The conditional ensemble averages of (2.1) and (2.2) with the centre of a bubble 
fixed at x, and for x outside the bubble are given by 

(3.2) 

Now since the terms on the right-hand sides of the above equations are proportional 
to p, we can determine u, and p ,  to 0(1) by simply setting the right-hand sides of 
these equations to zero and requiring that u, and p ,  approach the corresponding 
unconditional fields to  O( 1 )  as I X - X , ~  +- 00. 

Assuming that p, +- p ,  = P +Ga eiwt-ik.x far away from the bubble with l@al < P and 
k = w/Cef (Cef = CL at the present level of approximation in small p), we determine 
the pressure and the velocity fields around the bubble. The solution of (3.1) and (3.2), 
with their right-hand sides set equal to  zero, can be expressed in terms of multipoles 
as 

- p+r; eiwt-ik.x, e-ik.s a a a  
1 -  a [ + n=O 2 m--n AnmY;( -  as, - as, - )G(ks ) ]  as, (3.3) 

and - iwp, u, = Vp,, (3.4) 

G(ks) = - = -ikh,(ks), 

where s = x-xl and G is the fundamental solution of the wave equation, i.e. 
e-iks 

S 
(3.5) 

corresponding to an outgoing spherically symmetric scattered wave from the centre 
of the bubble. Here h, = h f )  =j,-iy, is the spherical Bessel function of the third 
kind (Abramowitz & Stegun 1972),jn and yn are the spherical Bessel functions of the 
first and second kind, Y; is an nth-order homogeneous differential operator defined 

Yr(sl,s2,s,) = snP;(cos0)eim+, (3.6) by 

s, 8, and # being the polar coordinates for the corresponding Cartesian coordinates 
s,, s2, s,. In  other words, the differential operator Y; is obtained by first writing it as 
the nth degree homogeneous polynomial in s,, s2, and sg and then replacing these 
arguments by a/&,, a/as,, and a/&,, respectively. The constants A,,  are to be 
determined from the boundary conditions on the surface of the bubble. These 
constants will be referred to as the strengths of the multipoles, e.g. A,, as the strength 
of the monopole and A, ,  as the components of the dipole strength. To determine 
them, we expand p, in Legendre polynomials as 

c o n  

a C C [ C n m j n ( k s )  + D n m  hn(ks)I Preim’, (3.7) 
- p+,$ eiwt-ik.xl 

1 -  
n-0 m--n 
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where the constants C,, and D,,  are related to  A,,. Let us choose the s,-axis to  
coincide with the direction of the wave vector k so that A,,, G,,, and D,, are all 
non-zero only for m = 0, and, using the general theorems for the differentiation and 
the integration of the Legendre polynomials given by Hobson (1931), it can be shown 
that (see also Appendix A) 

D,, = i( - k)"+'A,, (3.8) 

and C,, = ( -i), (2n+ 1) .  (3.9) 

The boundary condition (2.13) now yields 

i o:jo +z j i  A,,=-- z = kR, 
zw: h, + zhl, ' R 

j ,  - u*[2 - n(n + l)]  zj:, 
h, - u*[2 - n(n + l)] zhk ' 

A,, = in-l(2n+ 1) k P - l  

(3.10) 

(3.11) 

where j,, h,, and their derivatives are all evaluated at z = kR. Since kR is typically 
much smaller than unity, we need only the leading-order estimates of A,, : 

A,, - . 2*(1+24)  4 
~ - to - 1zt; - to = w, R 3( 1 - w : ) ~  

A,, = - ikR3 + O(k2R4), 

A,, = O(knRZn+l), n 3 2. 

(3.12) 

(3.13) 

(3.14) 

It may be noted that the above estimates for the strengths of monopoles and 
dipoles for small kR can also be obtained in a simpler manner by using a perturbation 
method in which the wave equation for p, is approximated, to the leading order, by 
a Laplace equation. This approximation is, of course, not uniformly valid in space 
and for distances s comparable to  k-l the neglected term in the wave equation 
becomes important so that a singular perturbation technique is needed for developing 
consistent approximations (see Prosperetti & Lezzi 1986 for details of such 
calculations). However, the leading-order terms can be obtained simply by solving 
Laplace equation near the surface of the bubble and requiring that 

p, + P +aa eiwt-ik.xl( 1 - iks,) as s + GQ, (3.15) 

obtained by expanding the far-field behaviour ofp,  for small k - s .  
We now proceed to obtain the leading-order estimates of A,, A,, A,,, and A,, as 

p+O. Since aglat is O(9,) (cf. (2.21), u being O($a)), we can approximate p,-pG in 
the linear theory by its equilibrium value -2glR in calculating A,, from (2.25). Thus 
we obtain 

Note that to  this leading-order approximation, the bubble surface may be taken to 
be the undeformed spherical surface and P ( x , )  may be approximated by its 
equilibrium value. Assuming that the spatial distribution of the bubbles is 
homogeneous in the equilibrium state, P ( x l )  equals P/V,, V, = 4nR3/3 being the 
volume of a bubble a t  equilibrium. 

We shall encounter integrals similar to that in (3.16) in subsequent calculations 
and therefore it is useful to  obtain a general formula for evaluating such integrals. 
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Integrands such as (n * u )  (x I x,) can be generally expressed as eiwt-ik.x 1 times a 
function of s = x - x, . Therefore, let us suppose that we wish to determine the surface 
integral of a function f ( x  I x,) given by 

m 

X f n ( s )  P O , ( C O S ~ ) ~  f ( x  I x,) = eiwt-ik.xlf*(s) = eiwt-ik.xl 

n-0 

where k is a vector with orientation along the s1 axis. Then i t  can 
that 

(3.17) 

be easily shown 

n-0 J - I  

= e'"t-ik.x47cR21f;,+gizf;+(iz)2 (;&+&A)+. . . I ,  (3.18) 

wherefn are evaluated a t  s = R. Similarly the volume integral can be evaluated from 

f ( x  I x,) dV, = eiwt-ik.x 47c J: s2 ds[&(s) LR 
+iiksf;(s) + (iks)2 (i&(s) +&A($)) + . . .]. (3.19) 

Now we evaluate the integral in (3.16) by making use of (3.18), (2.6), and (2.9) to 
obtain 

(n - u )  (x I x,) ~ ( x , )  d ~ ,  = iw eiwt-ik.xa [ijoo + ~ ( z q , , ) ~ .  (3.20) s IX-X,I-R R 

Noting now that apo/at = iw$aeiwt-ik.x, and combining (3.16) and (3.20) we obtain 

(3.21) 

so that on substituting for qoo from (2.12), (2.14), (3.7)-(3.12) and combining with 
(3.16) we obtain 

+ O(z2) ,  
6a*w: 

1 - wf( 1 - iz) A,, = (3.22) 

where we have made use of the fact that ijlo = O(z). 
Similarly, to calculate A,, we write 

(3.23) 

where (pL -pG)" is the jump in the pressure at the surface of the bubble due to O($,) 
terms. Now the direct evaluation of the first term on the right-hand side of the abovc 
equation from the expression 

2a  
{OL-PG) W O  =  go - W P ,  -Pc)") (x I x,) W,) a,, 

(3.24) 

a& being the (deformed) surface of the bubble a t  x,, is quite complicated since i t  
requires evaluating both P(x , )  and the shape of the interface correct to O($a), the 
former being the most difficult to evaluate. Fortunately, we can make use of the fact 
that go must satisfy the same wave equation as that satisfied by p ,  or uo. Thus we 
write 

(3.25) 0 -  - pi1 +peiwt-ik.x 1, 



236 A .  S. Sangani 

where b is proportional to  5,. Now determining b from the first equality in (3.16) and 
(3.22), we determine Vg, without much additional effort to be given by 

2a 
-Vgo = -PAReVpo = -Vpo(6a*to+O(~)). (3.26) 
R 

The second term on the right-hand side of (3.23) can be evaluated by noting that only 
the s1 component is non-zero and n1 = cos 0 = Py(cos e) ,  so that on writing 

(PL-Pdan1 = ~ l o ~ : ~ c ~ ~ ~ ~ + ~ P , , - P a d , + ~ ( p 2 , ) ) ~ ~ ( c o s e ) + .  .. , (3.27) 
usingp,,(R) = 0 (cf. (2.13)), relating (p,,-p,)"(R) to roo, and using (3.18) we obtain 

4a*w,2 + 0 ( z 2 ) .  
1 -w;(  1 -iz) ~ R r n  = 

To calculate A,, we determine the time derivative of p ,  from (2.10) as 

(3.28) 

(3.29) 

and then make use of the relation p,, = - 3y*Pe R-lyOO, obtained by combining (2.12) 
and (2.14), to  yield 

The constant A, can be now readily evaluated to yield 

+ O(22). 
A = -  Y 
P y* 1 -w;(  1 -iz) 

(3.30) 

(3.31) 

Finally, to  calculate A,, we first determine the velocity field inside the bubble. 

cpl = -pl/(iopL) for s > R, (3.32) 

Writing u, = Vq,, and combining (2.1), (2.2), (2.6), and (2.10), we obtain 

(3.33) 3aroo 3 V z q  - - - = - ( u  -n) , ,  for s < R ,  
' - R a t  R 

where (u,.n),, is the coefficient of P: in the expansion of the normal velocity a t  the 
surface of the bubble. The solution of (3.33) for s < R can be expressed as 

(3.34) 

where the constants En, are to be determined from the requirement that u,.n be 
continuous across s = R. For example, 

(3.35) 

The velocity inside the bubble can be calculated now by differentiating (3.34) : 

S 
u1 = - (u, .n), ,  +El, e, + O(k2s ) ,  (3.36) 

where el is a unit vector along the s,-axis. Only the term containing E l ,  is important 
for determining the leading-order estimate of A,, and using (3.35), and noting that 

R 

, we obtain wpL u, = k$, e-iwt-ik.x, 

A, = 3+O(z2). (3.37) 
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The above result, that  the acceleration of an isolated bubble is three times the 
acceleration of the fluid, is, of course, the classical result for potential flow. We 
reproduced the essential steps in the derivation here only to aid us later when we 
calculate the 0(/3) correction to A,. 

With the above O(1) estimates of A,,, A,,, A,, and A,, we now estimate the speed 
of sound to  O(p)  from (2.29) to be given by 

which agrees with the Foldy approximation (1.1) with three minor modifications. 
First, y is replaced by y* in the last term. Second, there is an extra 0(/3) correction 
in the coefficient of l/C:, which, as mentioned in 5 1, is typically much smaller than 
the last term on the right-hand side of (3.38) and hence of no practical significance. 
And third, we see that the speed of sound is now a complex quantity so that there 
is an attenuation due to the term of O(z). If we multiply the denominator of the 
second term on the right-hand side of (3.38) by w: and write i t  as 

W E  - 0’ + i b d ,  (3.39) 

then the damping parameter b equals z or w R / C L .  This effect due to scattered waves 
from the surface of the bubbles is known as acoustic radiation damping. 

From the above calculations we see that in the limit w,+O, the strength of the 
monopole A,, vanishes and A,+y/y*. This can also be seen from (2.13), where we 
obtain pho = 0 on each bubble by substituting w, = 0. Now since the potential flow 
approximation is valid near the surface of each bubble, p,, must be of the form 
ei”t(cl+c2/s) for each bubble with the constant c2, being the strength of the 
monopole, equal to zero for w, = 0. Moreover, the wavenumber k also becomes very 
small a t  small frequencies and so the O ( z )  and higher-order terms that were not 
evaluated in determining various coefficients also remain negligibly small. This 
suggests that, in fact, A, + y /y *  for all values of p in the limit of w, + 0. Thus from 
(2.29) we see that, with the O(1) estimates of A, and A,, obtained here, i t  is in fact 
possible to  calculate the effective speed to O ( p ) :  

- 1 1  = -[1-4/3+0(p2)]+- 4 w, 4 1, (3.40) 
CEe CZ, 

except for the unimportant O(pZ) correction multiplying Ci2. If we take y = y*, the 
above expression agrees with that given by Caflisch et al. (1985 b )  who considered the 
case We = co. 

When w, is not small, we see from (2.29) that, if we ignore small corrections 
multiplying the Ci2 term, then we need to determine only A, correct to O(B) in order 
to determine (7;: correct to  O(pZ). This we shall consider next. 

3.2. Determination of A, to O(p) 

Before we proceed to determine the higher-order corrections to A,, we make a 
simplification in the conditional-averaged equation (3.1). We recall that  our interest 
is largely in determining the corrections to  A, when w, is O(1). With the expression 
for C;: determined to O(p)  (cf. (3.38)), we can now express the effective wavenumber 
k = w/Ce, as 

(3.41) 
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where k, = w/C, is the wavenumber for the pure liquid. We shall be interested in 
analysing situations for which w, is O( 1)  and p is small, but ktR2 4 Po,"/( 1 - w:). We 
note that the ratio of the last two quantities is equivalent to  (C,/Cef)2, which for p 
greater than 0.01 is 200 or larger for the air-water system. For p satisfying the above 
condition, the compressibility of the mixture may be considered to be solely due to  
the bubbles, and we may regard the liquid as incompressible. To put in another way, 
near each bubble the liquid may be considered essentially incompressible and the 
compressibility effects of the liquid are important only a t  distances of O ( k i l )  from 
the bubble. If this distance is much larger than O(R/@),  then the compressibility 
of the mixture due to non-zero volume fraction of the bubbles plays a much more 
significant role than the compressibility of the pure liquid. Thus setting 1/C, and k ,  
to zero in (3.1) we obtain, for Ix-x,I > R :  

(3.42) 

Now to determine A ,  correct to O(p),  we must solve (3.2) and (3.42) subject to the 
condition that p ,  and u, approach, respectively, p ,  and u, correct to O(p) as 
Ix-x,I --z 00. From the O(1) estimates of A,,, A ,  and A ,  determined in the $3.1, we 
see that p ,  and u, satisfy the following equations to O ( p ) :  

(3.43) 

au 
p , ( 1 - 3 p ) ~ + ( l + 4 ~ * t , ) V p 0  = 0, (3.44) 

where to = w,"/( 1 - 0,"). Eliminating the velocity field and denoting the amplitude of 
the fluctuations by a hat, e.g. p ,  = P+$, eiwt, we see that $, satisfies the Helmholtz 
equation : 

(3.45) 

where, to O(p) ,  k2 is the same as that given by (3.41) with k, set to  zero, i.e. 

VZ$, + k2$, = 0, 

0 2  
k2R2 = 3 p Z  = 3Pt,. 

1 -w: 
(3.46) 

Thus the effective wavenumber is O(R& when w, is O(1).  We shall require that $, 
satisfies the same equation as $, as Ix-x,I + 00. An equation for $, correct to O(p) 
can be obtained by eliminating u, from (3.2) and (3.42) by first taking the divergence 
of (3.2) and subtracting iwp, times (3.42) from it. The divergence of the first term on 
the right-hand side of (3.2), with a/at replaced by io, equals 

i%{J (--n.4,(x)PcdS2+J V - i , ( X ) P , d &  1 , (3.47) 

where P, = P(x, I xl) is the conditional probability density for finding a bubble at x2 
given that a bubble exists at x,. The subscript 2 in the above expression implies a 
conditional average with two bubbles fixed at  x, and x,. For brevity, we have 
suppressed the arguments of P,, Now inside the bubble at x,, we have v.12, = 
-iw$2/(yPe), so that the second term in (3.47) will cancel the right-hand side of 
(3.42), resulting in the following equation for $, for x outside the bubble a t  x, : 

Ix-x,l-R Ix-x21 < R 

V2$, = -iwp, 
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Now instead of evaluating the right-hand side of the above equation as a function of 
x f i s t  and then solving for $, subject to the boundary conditions, we follow the 
method of generalized functions presented by Hinch (1977) and relate the solution of 
the above problem directly to the solution of the two-bubble problem. Introducing 
generalized functions we write (3.48) for x outside the bubble at x1 as 

V2$ 1 =-  J d W C J  dS’[iwp,(n’ - a), (x’) 6(x - x’) 
Ix~-xZI  2R X’Eav, 

+{($L-$c) (x’) n’ .V~Y(x-x ’ ) )~ ] .  (3.49) 

Here, the second integration is carried out on the surface of a bubble placed at x,. 
The reason for doing this mathematical manipulation is to convert the integrals in 
(3.48), which are somewhat difficult to evaluate as they are carried out for all the 
different bubbles whose surfaces pass through the point x, to the integrals on the 
surface of an individual bubble located a t  a fixed point x,. As we shall see later, the 
solution of (3.49) can be more easily related to the solution of the two-bubble 
problem, and therein lies the main advantage of the approach suggested by Hinch. 
According to the expression (3.49), the singularities in $, outside the bubble at x, are 
distributed on the surface of each second bubble where both $, and the normal 
derivative n-vfi, are discontinuous owing to the finite surface tension and the 
compressibility of the bubble. 

Now since u e  require that fil +$o a t  infinity and since ji0 satisfies the Helmholtz 
equation, it is useful to  add the following identity t o  (3.49) : 

(3.50) 

which is valid for x outside V,. Note that in this identity x, is merely a dummy 
variable of integration and nothing is implied about the two-bubble problem. I n  fact 
the integration is carried out for $, which is the conditionally averaged pressure with 
a single bubble fixed at x,. The advantage of adding this identity to (3.49) is that it 
converts the left-hand side of (3.49) into a Helmholtz operator, thereby making it 
easier to satisfy the boundary condition for $1 at infinity. Now let us decompose $, 
into two parts : $, = $: +$:. The effective-medium part satisfies 

V2$: + k2$: = 0 (3.51) 

together with the boundary conditions given by (2.13) at Ix -x ,~  = R and $;+$o 
(=  $ae-ik.x) as Ix-xJ + 00. The solution for this part is straightforward and it is 
readily obtained from the solution presented in $3.1 with k now being given by (3.46). 
Since we now wish to  calculate the terms to  0(/3), we need to keep the O(z2) terms in 
(3.12) and (3.19). (Since the pressure inside the gas bubble is uniform, in evaluating 
the volume integral of apG/at only the component corresponding to jjo0 is non-zero.) 
Thus the contribution to A, from the effective-medium part and from the finite 
wavelength ( O ( 2 )  term in (3.19)) can be shown to equal 

A; = ; -WI [jO(Z) +Do0 ho(z)l 
Y 

(3.52) 

Since z2 = 3/3t0, we see that now the leading-order correction is O ( @ ) ,  and since this 
is a purely imaginary quantity, it implies an attenuation of the sound waves. 
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remainder, i.e. 

V2$p+ k2$f' = 

The other part, which accounts for the pairwise interactions, satisfies the 

dhPC W{ - iwp, n'eli, S(x - x') 
J S 2 2 R  /x'E8V2 

+ ( $ L - $ G ) n ' ( ~ ' ) . V S ( ~ - ~ ' ) } + ~  3Pt ~ ~ C S ( X - X ~ ) $ , ( X , ) ~ & .  (3.53) 
47CR2 j S > R  

Here S = x,-x1 and S is the magnitude of S. The boundary conditions are that $p 
satisfies (2.13) on thesurface ofthe bubble Ix-x,I = R a n d  that$y+Oas Ix-x,I + GO. 

Since P, is O(P),  we need to determine the two-bubble problem only to 0(1) to  
obtain $f' correct to 0(/3). Similarly we can replace $, on the right-hand side of the 
above equation by its O( 1) estimate. 

The solution of the two-bubble problem can be obtained once again by the method 
of multipole expansions with the multipoles now located a t  x, and x,. Thus we write, 
for x outside both bubbles, 

2 

+c q-1 n, c m A:,Y:(? as, ' 2 as, A ) G ( k l x - x , l ) ] .  as, (3.54) 

The details of the calculations of the strengths of multipoles AZm are given in 
Appendix A. Here we note that since G is a fundamental solution of the Helmholtz 
equation, 8, has singularities a t  x, and x2 as given by 

Returning now to the solution of $,, we note that the complete solution for $f can 
be obtained by first writing a particular solution due to the right-hand-side forcing 
in (3.53) as obtained by replacing -47tS(x-x') on the right-hand side of that 
equation by Q(klx-x'l)  and then adding the solutions of the Helmholtz equations 
with singularities at x, to satisfy the boundary conditions (2.13) on the surface of the 
bubble. However, since our interest is mainly in determining A,, we can bypass the 
latter step and determine A,  directly from the behaviour of the particular solution 
near the centre of the bubble at x,. Thus, i t  can be readily shown from the 
calculations of $3.1, with a relative error of O(z) (or O ( @ ) ) ,  

(3.56) 

where 2,par is the particular solution due to  the right-hand side forcing in (3.53). 
Next, we note that, as far as the behaviour of &'par near x = x, is concerned, the 
distribution of fundamental singularities on the surface of the bubble a t  x2 in (3.53) 
must be equivalent to the series in higher-order multipoles a t  the centre of the bubble 
at x, in (3.55) since both represent the same two-bubble interaction problem. Thus, 
replacing the terms inside the curly bracket in (3.53) by the right-hand side of (3.55) 
and then writing G(kS)  in place of -47c8(x1 -x2) to obtain the particular solution, we 
obtain the contribution to A, from the pairwise interactions part as 

Y d~{e-ik'S+A,, G(kS) }  G(kS)  
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where we have suppressed the differentiation arguments of YF for brevity. Note that 
only A,, from the single-bubble solution (cf. (3.3)) contributes to the O(1) estimate 
of 3, as z is O(/$). Now the summation in (3.57) can be replaced by the monopole at 
x, by making use of the following relation derived in Appendix A (cf. (A 8)) : 

C A:, YF G(kS) = 4 0  -- 1, (3.58) 

and, furthermore, as shown in Appendix A (cf. (A 17)),  the term on the right-hand 
side of the above equation can be expressed as 

n. m Rt,  

00 

4 0  _- 1 = RtoG(kS)e-ik'S+R2t~(G(kS))2+R3t~(G(kS))3e-ik~s- C a , G r ,  (3.59) 
RtO n--4 

where the a, correspond to the fourth- and higher-order reflections. Now P, + P(x,) 
= P/Vb as S+ and hence we see that the contribution from the first two terms on 
the right-hand side of (3.59) cancel exactly the contribution from the integral of $, 
in (3.57) resulting in an overall integrand that decays as (G(kS))3e-ik's as S+ m. If 
k is identically zero, then the resulting integral is not absolutely convergent. 
However, the presence of the term e-ik.S makes it convergent for finite k. (It may be 
recalled that k = z/R = O(@/R).)  

We shall assume that P, is given by the usual ' well-mixed ' distribution according 
to which P,(S) = 0 for S < 2R and Pc(S) = P/Vb for S 2 2R. In this case we need to 
integrate 3, in (3.57) only over the exclusion region R < S < 2R and we can use the 
expansion with k -+ 0 for this purpose. Similarly, since the higher-order reflections 
decay as SP4 or faster, we need to evaluate a ,  only for k + 0. The only part where the 
finite value of k is important is the third term in the right-hand side of (3.59), which 
for small k can be evaluated from 

e-3ikS e-ik.S 

d& = 1 - C - In ( 16) - t In (z2) -+in + O(z), (3.60) '5 4n S S B R  s3 

where C = 0.577215.. . is Euler's constant. Combining all terms, including the 
contribution from the effective medium part, we obtain the following expression for 
A, correct to O ( P ) :  

(3.61) 

with to = w : / (  1 -w: )  and z2 = 3&,. In the above expression for A p l ,  the contribution 
from the exclusion region is :+ to ,  that from the finite wavelength is &, and the 
remainder is from the effective-medium part and the third- and higher-order 
reflections in the pairwise interaction of bubbles. 

In summary, we see that the leading-order correction to A, is a purely imaginary 
quantity of O(&. As mentioned earlier, this contributes to the acoustic damping. 
The damping parameter b introduced in (3.39) now equals wR/C,, to the leading 
order (with Ci,Z = Pp,/[y*P,( 1 -w:)]), instead of the commonly used estimate URIC,, 
and thus can be a quite significant damping mechanism, at  least for w, < 1. The 
leading-order correction to the phase speed, i.e. the real part of C,,, is 0(/3ln/3). This 
correction results from the third reflection in the two-bubble interaction. 



242 A .  S. Sangani 

There is a considerable resemblance between the calculations presented here and 
those in the problem of determining the permeability of random arrays of spheres 
(Howells 1974; Hinch 1977; Kim & Russel 1985b). In  that problem, the disturbance 
flow due a particle placed in a uniform Stokes flow decays as l/s near the particle and 
more rapidly, as e-'IS/s where u2R2 = 9p/2 is related to the inverse of permeability, 
at larger distances from the sphere due to what is known as the Brinkman screening. 
The force required to keep the particles fixed a t  their positions introduces a 
resistance term in the far-field description of the conditionally averaged velocity field 
which makes the conditionally averaged disturbances decay more rapidly at  infinity 
than l/s as predicted by the Stokes flow equations. Replacing the fluid medium 
around the test particle by an effective medium which satisfies the Brinkman 
equation produces the first correction to the permeability which is O(,&), /3 being the 
volume fraction of the particles. It turns out that  replacing the fluid by an effective 
medium actually accounts for the first two reflections in the two-particle problem. 
This is not so surprising when one realizes that the effective medium calculation in 
fact accounts for the change in properties of the medium as caused by the presence 
of other particles. The third reflection in the Stokes flow interaction of two particles 
is proportional to O(R/S)3  and the straightforward integration of this diverges 
logarithmically for large distances. Therefore even here the fact that the two widely 
separated particles interact through the Brinkman medium and not the Stokes 
medium is important. This third reflection a t  large separations decays exponentially 
as e-3aS/S3 and, accounting for the fact that 01 = O ( @ ) ,  produces the O(p1np) 
correction to the permeability. 

In  our problem, there is no such screening mechanism because 01, which is 
proportional to ik, is a purely imaginary number. The effective medium now consists 
of a compressible medium with the compressibility determined by the amount of 
bubbles. The spherically scattered wave from the surface decays as ePiks/s as opposed 
to a l/s decay in an incompressible liquid. Once again this effective-medium 
calculation accounts for the first two reflections in the two-bubble problem. The third 
reflection, which decays as e-3iks-ik.s/S3 in the two-bubble interactions in a 
compressible medium, could be integrated to yield a finite value even in the absence 
of a screening mechanism because of the finite nature of the wavelength. The angular 
integration of e-ik.S on the surface of a sphere of radius S yields 47t sin kS/kS and 
thus, the third reflection actually gives rise to an integration in S that decays as l/S4. 

It is useful for the calculations in subsequent sections to summarize the essential 
steps used in the pairwise interactions calculations for determining A ,  to O ( p ) .  These 
steps, which are very similar to the general method outlined by Acrivos & Chang 
(1986), involve the following. (i) Identifying the proper form of the conditionally 
averaged equations as S+ 00. This was found from the requirement that the 
conditionally averaged fields must approach the unconditionally averaged fields to 
O ( p )  (cf. (3.43), (3.44)). (ii) Solving for the effective part @f) that satisfies the 
boundary conditions a t  infinity. This was done by replacing the governing equations 
with those satisfied by the averaged quantities in the effective medium. (iii) 
Subtracting the first two reflections (the first two terms on the right-hand side of 
(3.59)) from the two-bubble problem and then integrating the remainder over all 
possible positions of the second bubble with respect to the first. (iv) Adding 
contributions from the exclusion region (R < S < 2R) and the non-local effects such 
as those due to the finite value of the ratio of micro to macro lengthscales (finite ICR). 
That the first two reflections from the two-bubble problem are automatically 
included in the effective medium calculation (step (ii)) is, in fact, a common feature 
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FIGURE 1. The real part of the O(p) coefficient A,, as a function of w, for u* = 03. The dashed curve 
is the contribution from the terms other than the fourth- and higher-order reflections (C,,) and the 
solid curve is the overall value. The points indicated by + are obtained from the principal value 
of the integral for C,, for w, > 0.828. 

in most calculations of this nature. Finally, in some problems it is possible to solve 
for an effective-medium part with the properties of the pure liquid for R < S < 2R 
and the effective properties for S 2 2R, in which case it is not necessary to evaluate 
the contribution from the exclusion region in (iv) (cf. $3.3). 

In the work of Caflisch et al. (1985a, b)  and Miksis & Ting (1986), the restrictions 
on w, and p were determined from the condition that the two lengthscales R and k;: 
must be widely separated so that the macroscopic description of the bubbly flows can 
be obtained from the leading-order homogenization. We see that such restrictions are 
not essential and that the results for a finite ratio of the two lengthscales can be just 
as easily determined using the method of ensemble averages. This, in fact, is also the 
advantage of the ensemble averaging technique over the volume averaging 
technique. Indeed, the ensemble averages approach has been applied quite 
successfully to studies involving non-local effects (Koch & Brady 1987 ; Shaqfeh 
1988). 

3.2.1. Numerical results for A,, 
The solid curve in figure 1 shows the real part of A,, as a function of w, for (+* = 00, 

i.e. for the large-surface-tension case. (As noted in $2.1, (+* is a function of w, for 
a fixed Weber number. For the purpose of discussion here, however, it is convenient 
to treat (+* as a constant.) In this case the deformation of the bubbles from the 
spherical shape is zero. The O(pln,P) and O ( 8 )  coefficients remain very small for w, 
up to about 0.4 and thus the expression given by Caflisch et al. (1985 b)  for w, + 0 is 
expected to yield very good estimates for the effective speed for w, < 0.4 and small 
,P. The coefficient A,, is positive for all values of w, except for a small range of 
frequencies near w, = 0.8280, where the contribution from the last term in (3.62), 
which represents higher-order reflections, becomes important. 

For u* = 00, pairs of bubbles resonate in two different modes; one in which both 
bubbles undergo volume pulsations in phase with each other and the other in which 
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FIQURE 2. The ratio of the in-phase mode resonance frequency of a pair of bubbles separated 
by a distance S to the resonance frequency of isolated bubbles for u* = 00. 

the pulsations are out of phase (Scott 1981). The ambient pressure around the 
bubbles a t  x1 and x2 is proportional to e-ik.xl and e-ik.xz and hence the magnitude of 
the in-phase pulsation is proportional to the mean, $(e-ik.xl + e-ik.xz) , and that of the 
out-of-phase pulsation is proportional to the difference (e-ik.xl - e-ik.xz) (see Appendix 
A). When S = Ix2-x1( is O(R) ,  the second mode is excited only by an O(kR) or O(& 
amount and therefore the contribution from this mode is of higher order. On the 
other hand, when kS is 0(1) both modes are excited but, since the two bubbles are 
then widely separated, both resonance frequencies are very close to the resonance 
frequency of the individual bubbles. Thus only the first mode of in-phase pulsations 
is important in the leading-order pairwise-interaction calculations. The resonance 
frequency for the pair of bubbles in this mode is smaller than the natural frequency 
of the individual bubbles. 

Figure 2 shows the resonance frequency (for the in-phase mode) of a pair of 
bubbles, w,, = W , , , , , ~ ~ ~ , . / W ~ ,  as a function of their separation distance S for u* = 00 

and k --f 0. The minimum in w,, occurs for S = 2R, corresponding to a pair of touching 
bubbles, and equals 0.8280. Clearly, a t  this frequency the contribution from the 
higher-order reflections will become infinitely large and, therefore, let us examine the 
behaviour of A,, near this critical frequency. The series in (3.62) actually corresponds 
to Ato by means of (cf. (3.59) with k = 0) 

where S' = SIR. As shown in Appendix A, Ato is given by 

1 1 
A00 - 
toR 1 - t , f (S ' ) .  

(3.64) 

For c* = 00, f is a monotonically decreasing function of s' with f(2) = 0.4585 and 
f'(2) = -0.1914. Thus, as the frequency is slowly increased, first a pair of touching 
bubbles will start resonating a t  a frequency w,, such that toc = l/f(2). For w, slightly 
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lower than wrc ,  the leading-order contribution to the integral in (3.63) arises from 
distances close to 2R and, hence, expanding the denominator of the term on the 
right-hand side of (3.64) as 

= const (w , , -w , ) - toc f ’ (2 ) (S ’ -2 )+ .  .., (3.65) 

we see that the divergence of the integral in (3.63) is logarithmic, as given by 

c,, =B,log(w,,-w,)+B,, 0 < w,,-w, < 1,  (3.66) 

where B, and B, are O( 1) constants with B, = - 12/(t0,f’(2)) = 28.75 for a* = 00. The 
constant B, was estimated to equal 85 by comparing the above limiting form with the 
numerical results for w, up to about 0.81, for which the series in (3.63) was found to  
converge rapidly. It should be noted that the divergence a t  w, = o, occurs strictly 
only in the absence of any damping mechanism. The damping due to  viscous or non- 
adiabatic thermal effects that  are usually present will eventually become important 
for sufficiently small values of w,,-w,, and, thereby, render A,, finite even for 
w = wrc. 

We now examine the behaviour of C,, as w, is increased beyond w,,. The integral 
in (3.63) in this case is not absolutely convergent as the denominator of the term on 
the right-hand side of (3.64) always vanishes for some critical separation distance S; 
between the pair of bubbles with 2 < SL < CO. The strength of the monopole Ato a t  
this critical separation distance becomes infinitely large and so at first it  might 
appear that  Cex and hence A,, are infinite for w,, < w, < I .  This, however, is not the 
case as in fact Ato + co on either side of this critical separation distance and this, 
in turn, has the effect of cancelling the large contributions from the pairs of almost 
resonating bubbles. Any mechanism which will act to dampen the pair of almost 
resonating bubbles will act equally on the pairs of bubbles with large positive and 
negative Ato, and hence the integral in (3.63) must be determined from its principal 
value in the Cauchy sense. To show this, let us suppose that the magnitude of a small 
damping term, due to  the viscous or non-adiabatic thermal effects to be examined in 
$54 and 5, equals r when the distance between the two bubbles is nearly equal to its 
critical distance Sh, as determined from the relation f(SL) = l/to. The denominator of 
the term on the right-hand side of (3.64) can be expanded near S’ = S; as 
1 - toIf(Si) +f’(SL) (S’ -SL) + . . .] + i r ,  and therefore we write 

S L Z  d s  
iT- t,f’(S;) (x’ -8;) ’ 

(3.67) 

where a(S)  equals unity for S; < S’ < Si and zero otherwise, and Sl, and S; are 
arbitrary constants bounding Si, i.e. S;  < Sh < SL. The integration of the second 
term on the right-hand side of the above equation yields 

(3.68) 

We can now ignore the small damping term in evaluating the logarithm in the above 
expression, and combine it with the first term on the right-hand side of (3.67) to  
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wr 

FIGURE 3. The imaginary part of A,, for w, > 0.828 and u* = co in the limit of small damping. 

result in the principal value of the integral in (3.63). There is, however, now an extra 
term, equal to -3inS',2/t0f'(S',), that must be added to the principal value of the 
integral for w > wrC. If r 4 (wr-wrc) < 1, then once again we find that the real part 
of A,, diverges logarithmically with w,-w,, as in (3.66) except that now we must use 
the absolute value of wFC-w, in that expression. 

It is no longer possible to use the series in (3.63) to evaluate C,, numerically for 
w, > 0.828 as this series does not converge. We therefore determined Aio by the 
method of direct substitution explained in Appendix A for several values of S' 
greater than 2 with increments of 0.01 up to S' equal to, say, 10. Then the precise 
8; a t  which Ato changed its sign was estimated, and a term proportional to  l/(F-S;) 
was subtracted from each Aio in its vicinity. The resulting coefficients were 
integrated numerically using Simpson's rule and the contribution from the term 
proportional to i/(S -8;) was calculated separately and added. This procedure was 
repeated for different sizes of increments and the maximum value of S' until no 
significant change in C,, was observed for the selected value of 0,. The results of such 
numerical calculations for w, > 0.828 are shown in figure 1 by pluses to distinguish 
them from the results for w,  < 0.828 indicated by the solid curve which were 
obtained by using the method of reflections. Note that this refers only to the real part 
of A,, for w > 0.828. The dotted line in figure 1 corresponds to the contribution to A,, 
from the terms other than C,,, i.e. the terms from the effective medium, finite 
wavelength, and exclusion region. We see that these terms dominate over the 
contribution from the close pair interactions (C,,) over most values of w, except near 
0.828. 

As mentioned earlier, the imaginary part of A,, is non-zero and equals 
-3nSAz/to f ' (S;)  for w, > 0.828 even when the damping terms are very small. Since 
S; --f 00 and f '($A) -+ 0 as w, -+ 1, we see that the magnitude of the imaginary part is 
very large for wc+ 1. The calculated values of this quantity are shown in figure 3. 
Sincef(8;) = l / to  andf(S') = 1/S'+O(x'-4), Im(AP,)+3nt~ as wr+ 1. From (3.63) we 
see that Re (Apl)+$t~lnto, so that both the real and imaginary parts of Apl become 
large as w, + 1. 
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FIQURE 4. The ratio of minimum frequency for which a pair of bubbles resonants in the 
in-phase mode to the resonance frequency of isolated bubbles as a function of u*. 

There is very little change in A,, as a function of w, as a* is decreased from infinity 
to about 0.15. For even smaller values of a*, however, there is a very rapid change 
in the behaviour of A,, in the vicinity of a* given by 

(3.69) 

corresponding to the resonances in the PF-mode shape deformation. Thus for finite 
surface tension there is an infinite number of modes in which pairs of bubbles 
resonate. In  the vicinity of these critical values of the surface tension, resonance can 
occur even for very small values of w,. In figure 4 we have plotted the minimum in 
w,, among all the possible pairs of bubbles as a function of g*. For the range of values 
shown in this figure, the critical value of g* is & = 0.08333. .  . , corresponding n = 2 
in (3.69).  We see that as a* is slowly decreased from 0.2, w,, first decreases from 
about 0.8280 to zero at  a* = & and then suddenly jumps to unity for a* values 
slightly lower than A. The minimum in the resonance frequency occurs for nearly 
touching bubbles for a* > &, and for widely separated bubbles for a* slightly lower 
than &. As a* is further decreased, we find that first the separation distance for which 
the minimum in w,, occurs, decreases from 00 to 2.23 as a* varies from to roughly 
about 0.077 and then once again the resonance of the pair of nearly touching bubbles 
determine w,, for smaller a*. Beyond this value of r*, w,, once again becomes 
constant until about r* = & = 0.025, whereby the P r  deformation begins to 
resonate and the same behaviour repeats except for the fact that the range over 
which the rapid changes in w,, now occurs becomes narrower. 

Although the effect of surface tension in pairwise interactions described here is 
quite interesting, we find that its overall effect on A,, is not profound. As we decrease 
(T* from 00 to about 0.15, there is almost no change in A,, as a function of w,. Upon 
further decreasing a*, the frequency at  which A,, diverges decreases in accordance 
with figure 4, but the range of frequency over which C,, defined by (3.63) makes a 
significant contribution also becomes narrower. This is because - f ' ( 2 )  increases 
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rapidly as u* approaches &. For example, a t  u* equal to 0.1 and 0.09, -j’(2) equals, 
respectively, 2.437 and 15.2. The corresponding values of B, and w,, are found to be 
respectively 2.462 and 0.7307 for u* = 0.1, and 0.3958 and 0.4763 for u* = 0.09. 
Furthermore, since to is also small when w, is small, the magnitude of the imaginary 
part of A,, also decreases. 

As concluding remarks to the calculations presented here, we recall that, as 
noted in $2.1, u* = u/ (pLR3w2)  can also be expressed, by means of (2.14), as 
u* = u/(3y*PeRwF). For P, equal to 1 atm, u = 70 dynes/cm, and w: = 0.1, u* is close 
to & for bubbles having a radius of 0.3 mm, which is well within the range of practical 
applications and many experiments. Therefore we summarize the principal 
assumptions made in our calculations. We have assumed that all the bubbles are of 
equal size, there are no surface-active impurities in the mixture, deformations are 
small, the viscosity has a negligible effect, and the bubbles do not coalesce. The 
distribution in the size of the bubbles will not prevent the resonances due to shape 
deformation from occurring but w,, in that case will not jump rapidly from 0 to 1 as 
u* jumps across its critical values. The divergent nature of C,, occurs only when the 
critical separation distance for the resonance of the pair of bubbles is close to 2R. 
However, this can be significantly affected if a coalescence of the pair of nearly 
touching bubbles occurs as a result of the resonance, although the experimental 
observations often do not show evidence of significant coalescence. Finally, it may be 
noted that while the effect of the usual monopole resonance for an isolated bubble is 
felt over a fairly large range of frequencies, say 0.6 < w, < 1, the shape deformation 
resonance effects are felt only over a very narrow range of frequencies for a given 
gas-liquid mixture because of their weak logarithmic divergence. The damping terms 
usually present due to a finite viscosity and non-adiabatic thermal effects are likely 
to be the most important ones in preventing these logarithmic divergences from 
occurring, resulting in a much smoother response of the bubbly liquid as a function 
of frequency over these critical values of surface tension. Indeed, the numerical 
calculations for A, including the viscous and thermal dampings and for bubbles with 
diameters of about 5 mm carried out in $5 seem to show almost no effect of these 
shape-induced resonances. 

3.3. Determination of A, to O(p) for small w, 

The estimates for A, correct to O(p)  and for A,, and A, to O( 1) obtained so far allow 
us to estimate C;: correct to O(p2)  when the compressibility of the liquid can be 
neglected, i.e. when ki R2 -4 p w f / (  1 -wF). Since Ap + y /y *  as w, + 0, for all values of p, 
it is possible to determine C;: correct to O(p3)  by calculating A,, and A, correct only 
to O(p) when w, is small. Since w, is indeed small in many practical situations, we 
shall determine in this section the O(p)  correction to A, for w, + 0. Also, since k2,R2 
is typically very small, we shall assume that the liquid is essentially incompressible. 

In  $3.1 we found that the coefficient A,, equals 4a*t0 or, equivalently, 
4/(3Wey*( 1 -OF)) ,  so that if we treat u* as an O( 1) quantity, then A,, + O  as w, + O .  
It should be noted that for an air-water system at ordinary temperatures and 
pressures We is approximately equal to R x lo4, R being in cm, and hence Agm is less 
than 0.1 whenever R is greater than cm. I n  other words, the numerical value of 
A,, is small for most practical situations. Consequently, it is unimportant to evaluate 
the O ( p )  correction to A,,. On the other hand, the effect of surface tension through 
shape deformation of the bubbles is likely to be quite important and therefore we 
shall treat r* as an O( 1) quantity even though w, + 0. 

To determine A,, we must solve once again (3.49), but instead of determining the 
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pressure inside the bubble a t  xl, we must now determine the acceleration of the 
bubble relative to  the mixture. The condition that g1 must approach $o as Ix-x,I + 00 

can be expressed now as 

$, = const+E.s, s = Ix-x,l+co, (3.70) 

since the pressure disturbances decay rapidly enough and the wavelength of the 
mixture is large. Here the constant equals $a e-ik.xi and E = - iklja e-ik.xl. Although 
the liquid acceleration is small, of O ( k ) ,  the ratio of the bubble to liquid accelerations 
remains finite and can be determined by treating E an O(1) constant. For small w,, 
the radial oscillations of the bubble vanish and so the temporal variations in the 
pressure represented by the constant term in (3.70) do not cause any relative 
acceleration of the bubble. Consequently, we can set the constant in (3.70) to zero. 
Now @, satisfies the Laplace equation outside the bubble with the boundary 
conditions at the bubble surface given by (2.13), and has a constant gradient a t  
infinity. The solution of this problem has been determined by van Wijngaarden 
(1976) and Jeffrey (1973). In fact, the problem as posed above is exactly the same as 
the one examined by van Wijngaarden who used the volume averaging technique 
due to Batchelor (1974) and obtained the O(p) correction to A, for u* = 00. I n  a later 
article (Biesheuvel & van Wijngaarden 1984), i t  was suggested that the numerical 
coefficient of this O(p)  correction was in error. Jeffrey (1973) has examined an 
analogous problem of determining the effective thermal conductivity k* of a 
composite consisting of spherical particles of thermal conductivity k,  dispersed 
randomly in a matrix of thermal conductivity k,. The pressure and velocity in the 
present problem are analogous to the temperature and heat flux in the problem 
examined by Jeffrey. The boundary conditions a t  the surface of the spheres, 
however, are generally different in the two problems. Only when k , /k ,  = 00 and u* 
= 0 do the two problems become identical. I n  fact, it can be readily shown that there 
is an exact relationship between A, and k* in this case for all values of p:  

k* - k ,  
(3.71) 

Since the calculations of A, for the complete range of u* have not been reported 
in the literature and since there was some uncertainty about the accuracy of the 
coefficient of O(p) as reported by van Wijngaarden (1976), we have re-examined this 
problem using Hinch's ensemble averaging technique. The strength of the monopole 
Ato in (3.55) now vanishes and the components of the dipole strength (Aim) now 
determine A,. Let us express the dipole strength of the bubble at x, by a vector A' 
as 

(3.72) 

Now the procedure to  determine the O(p) correction is essentially the same as that 
described by steps (i)-(iv) in $3.2. The velocity of the bubble a t  x, is calculated from 
the behaviour of the particular part of V$, evaluated a t  the centre of the bubble by 
means of 

- iwp, *1 = 3%, par(x1). (3.73) 

There are two contributions to The first one, which is similar to  that from the 
effective-medium part in $3.2, corresponds to a uniform distribution of dipoles of 
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strength Ao = ER3 for s' 2 2, and its contribution to VrjlSpar can be shown readily to 
equal E( 1 +p). The second part, which arises from the pairwise interactions, is given 
by 

Once again, i t  can be shown from the details of the two-bubble problem that the 
quantity inside the square brackets on the right-hand side of the above equation is 
exactly equal to the dipole strength of the bubble a t  x, minus the first two reflections 
in the pairwise interactions. Now from Jeffrey's (1973) solution for the Laplace field 
around two spheres we can express the dipole strength of the sphere at x1 as 

(3.75) 

where go, and g,, are scalar functions of S' and B*. Combining the contributions from 
both the effective-medium part and the pairwise interactions, and making use of the 
fact that for We x 00 

ho = (1+3P)E, (3.76) 

it can be shown that the ratio of the acceleration of the bubble to that of the mixture 
is given by 

The evaluation of go, and gll is similar to that in the Jeffrey's paper except that /3, 
which were defined in terms of k , / k ,  in that paper are now defined in terms of c* by 
means of 

l+na*[n(n+1)-2] 
= 1 - (n+ 1 )  a*[n(n+ 1 )  -21. 

(3.78) 

Note that for the special case of B* = 0, the above expression reduces to Pn = 1 for 
all n, which is also the case for k , / k ,  = co, and this, in turn, suggests the 
aforementioned connection between A, and k* (cf. (3.71)). The quantity 2g,,-gO1 - 3 
in (3.77) can be expanded in inverse powers of x' as in Jeffrey (1973). The leading- 
order term as S' + co is O(S'-6) corresponding to the third term in the expansion of 
A1/R3,  and the integral in (3.77) can be expressed as 

The first few coefficients of the above series are given by 

b6 = 6 ;  b, = 0; b, = 15p,; b, = 6, (3.80) 

where use has been made of the fact that PI = 1 for all cr*. 
The convergence of the series in the above expression was found to be generally 

slow, and up to about 60 terms were needed in determining the O(p) coefficient for 
the two extreme values of B* of 0 to co. For B* = 00,  this coefficient approached 
- 1.846, which is in agreement with the value - 1.85 reported by van Wijngaarden 
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(1976) in his original study. Thus we believe that the remark made by this author in 
his later work (Biesheuvel & van Wijngaarden 1984) must be ignored. (In a more 
recent study, Biesheuvel & Spoelstra (1989) have also quoted the coefficient to equal 
- 1.85, thus confirming the validity of the original result.) 

For u* = 0, the O(p)  coefficient equals - 1.50, which is in agreement with the result 
reported by Jeffrey (1973) after making use of (3.71). (For k,/kl = CO, Jeffrey gave 
k*/kl = 1 + 3p+4.51p2.) 

3.3.1. Resonance effects in A, for finite surface tensions 
We now discuss the dependence of the O(p) coefficient of A, on intermediate values 

of a*. In particular, it is of interest to examine the influence of the shape-dependent 
resonances. Note that, as mentioned earlier, although we are interested in the present 
section in situations where w, is small compared to unity, we may still have u* = 
u / ( p L  R3w2) small enough that these shape-dependent resonances occur even for small 
w,. As an illustration of the effect of these resonances, let us examine the case when 
u* is nearly equal to & corresponding to the Pr-mode resonance (cf. (3.69)). Let 
E = a*-& be a small quantity. We note from (3.78) that /3,+kw as e + k O ,  and 
therefore it is clear that the series in (3.79) will diverge as a + O .  An analysis of the 
equations that arise in the two-sphere interactions shows that for, small E ,  

g = - I - -  2- ]+o(s.-". 
01 S ' 3  " (y€S'5+2) 

(3.81) 

(3.82) 

Thus we see that the coefficients of O(SP3) (the second reflection) in gll and gol 
depend on eS5.  The magnitude of this reflection in the inner resonance region (2 < 
S' < E-;) is quite different from its value for a pair of widely separated bubbles. In 
other words, the magnitude of this reflection remains quite different from that used 
in determining the contribution from the effective-medium part. Since the series in 
(3.79) diverges for small E ,  we must evaluate the integral in (3.79) directly by 
evaluating go, and gI1 numerically as a function of S' using the method of direct 
substitution described in Appendix A. Separating the contributions in (3.79) that 
decay slowly when E is small from the remainder we write 

(3.83) 

where gi1 and gil are the remainders that decay uniformly as S'-6 as E + 0. Now we 
note that although the contribution from each term in the first integral in (3.83) 
taken separately does not converge, their combination does and hence this integral 
approaches a constant as E + 0. Consequently, the O(p) correction to A, is finite even 
when E = 0. The detailed numerical calculations using the Simpson's rule for 
integration yielded the O ( p )  correction to A, to be -2.10 for e = 0. 

The above discussion applies to the other critical values of a* (cf. (3.69)) also, so 
that we conclude that A, is finite at u* = a,*. While there is no divergence at E = 0, 
we find that the calculation of A,, for finite E is not so straightforward and that, in 
fact, there are other values of u* for which A,, diverges. The difficulty arises from the 
fact that the denominator in (3.81) diverges for e S 5  = implying that, at  this 

9 F L M  232 
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FIGURE 5. The quantity (gl, - 1) S3 as a function of S = SIR for a pair of bubbles 
at E = g*-& = 0.01 and small w,. 

separation distance between the pair of bubbles (provided that S' 2 2), g,, + f co. 
Although the expression for gll given by (3.81) is valid only asymptotically for large 
S' and small e ,  we note that the higher-order terms only change the precise S' a t  
which gll diverges. For example, figure 5 shows (gll - 1 )  S3 as a function of s' for 
e = 0.01 as determined numerically by solving the two-sphere problem by the method 
of direct substitution for various S' using a sufficiently large number of multipoles. 
It is seen that the divergence occurs a t  S' x 2.4, while e S 5  = 8 yields S = 2.23. Thus, 
for €-values which give the divergence of gll for some S' greater than 2, there is a 
difficulty in evaluating the Awl. Since a t  such critical values of S' the function gll 
changes its value from + co to  - co, we note that the contribution from the large 
positive values of g,, will roughly cancel that  from the large negative values, 
resulting in a finite contribution. In other words, we must once again evaluate the 
principal value of the integral in (3.79) when gll diverges for some s' greater than 2. 
For one critical value of E ,  however, the divergence in gll will occur precisely a t  
S' = 2 and for €-values close to that critical value we must observe a logarithmic 
divergence of A,,. Thus, for example, we find that 

A,, = 0.14 In lu* - uXitl - 1.73, u& x 0.109. (3.84) 

Here the constants 0.109 and 0.14 are evaluated from the divergent nature of gll near 
u* = uZrit and the constant 1.73 is evaluated by comparing the numerical results for 
A,, for u* > 0.109 with the leading order in (3.84). 

Similarly, the denominator in the term on the right-hand side of (3.82) becomes 
zero for some s' for negative values of E and, consequently, once again there will be 
a logarithmic divergence in A,, near a negative value of e. The detailed calculations 
show that this occurs a t  E = -0.0208 or a t  c* = 0.0625. While A v l + -  co as cr*+ 
0.109, we find that A,, + + co as u* + 0.0625. Thus, although A,, is finite exactly a t  
u* = a,* given by (3.69), it diverges a t  two values of u* in the vicinity of this critical 
value. This behaviour is also observed near other critical values of u* with each uz 
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FIGURE 6(a,, b) .  The quantity 2gl1-qo1-3 at the surface of the bubble aa a function of 
fT*(wr = 0). 

in (3.69) giving a pair of values of u* for which A,, diverges. This can be shown by 
evaluating the quantity 2g,, -go, - 3 at S' = 2 as a function of c*. This quantity, as 
shown in figure 6, goes through f 00 near each critical u,*. The calculations have been 
carried out for c* values up to about 0.0005 in figure 6(b )  and it appears from these 
calculations that the range of s-values for each critical u,* over which the influence 
of a particular PE-mode resonance is felt, becomes narrower at a sufficiently fast rate 
for larger n so that there is no overlap of the resonance range for one n with that 
corresponding to the other n. In other words, it appears that A,, goes through an 
infinite number of discontinuities in the limit u* + 0. 

From the above discussion it is clear that for u* values near each critical UF given 
by (3.69) there will always be a pair of bubbles that resonates due to shape 

9-2 
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FIGURE 7. The real part of the O(p) coefficient of A, as a function of u* for small w,. 

deformations and A,, is indeterminate in the absence of any damping mechanism. In  
the presence of slight damping, however, the contribution from the nearly resonating 
pairs will cancel and A,, can then be determined by evaluating the principal value of 
the integral in (3.77) as in $3.2.1. The results are shown in figure 7. The peaks near 
each critical u* becomes narrower as we decrease u* from about 0.12 to 0. The 
approximate values of u* at which A,, diverges are 0.109 and 0.0621, corresponding 
to a,* = & = 0.0833..  .for the P,-mode resonance, and at 0.0328 and 0.01898 for 
a,* = $, = 0.025 or the Pr-mode resonance. The results for g* in the range 
0.06214.109 and 0.018 984.0328 were, of course, determined from the principal 
value of the integral in (3.77). Since the series in (3.79) does not converge even when 
u* is outside these ranges, all the calculations shown in figure 7 were made by the 
direct substitution method. 

As in the case of A,,, an imaginary contribution also arises for A,, for a range of 
u* values around each u,* whenever i t  is required to evaluate the principal value of 
the integral. Thus an attenuation of O( 1 )  arises from pairwise interactions even when 
w, is small. (Of course, a t  sufficiently small w,, u* will eventually exceed 0.109 for a 
fixed We and below such frequencies there will be no attenuation due to shape 
deformations.) When the damping term is small, the imaginary part of A,, can be 
determined easily from S;, a t  which the resonance occurs, and the derivative of 
(Sl-S;) (29,, -go, - 3) at S;. The results for u* in the range 0.062-0.109 are shown in 
figure 8. As u*+& resonance occurs for widely separated bubbles and the 
asymptotic expressions for g,, and gol as given by (3.81) and (3.82) become 
applicable. From these expressions i t  is easy to  show that Im (A,,) ++37c/10 as 
e = u-&+fO. In other words, this quantity goes through a jump discontinuity 
a t  u* = &, Thus the result A,, = -2.10 a t  e = 0 mentioned earlier is actually correct 
if we take the imaginary part to equal the mean of its limiting values for e+&O. 

We also find that Im (A,,) remains finite as u* + 0.109- and u* + 0.062, since 
the derivatives of (8'-2) (2g1, -go, -3) remain finite a t  these critical values 
corresponding to the resonance of pairs of touching bubbles. 

Finally, it may be noted that the above discussion for Im (Avl) applies strictly in 
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FIQURE 9. A, as a function of /3 for u* = co and small w,. The solid curves are the results of large- 
scale numerical simulations using 16 bubbles randomly placed within a unit cell and the dashed 
curves are due to the O(B) theories for u* equal to 0 and a. The results of simulations for u* = co 
are taken from Sangani et al. (1991) and those for u* = 0 are obtained from the results of effective 
thermal conductivity presented by Sangani & Yao (1988) by making use of (3.71). 

the limit of small damping. If we fix the damping to an arbitrary but small value, 
then the behaviour of Im(h,,) will, of course, be affected eventually by the exact 
value of the damping for u* sufficiently close to 0.062, &, and 0.109. We shall address 
this question again in $4 where we explicitly take into account the damping due to 
small viscosity. 
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FIQIJRE 10. Effective speed of sound as a function of B for small w,. The experimental data of 
Micaelli (1982) are denoted by stars; the broken curves are due to the O(P) theory; and the solid 
curves are calculated from the numerical values of A, taken from the simulations of Sangani et al. 
(1991) and Sangani t Yao (1988). 

3.3.2. Cmparison with the numerical and experimental results 
Using the methods of computing multiparticle interactions now available it is 

possible to compute A, directly by a large-scale simulation involving a sufficiently 
large number of randomly placed bubbles. The corresponding calculations for the 
determination of the effective conductivity were made by Sangani & Yao (1988). 
Using the method outlined there, Sangani et al. (1991) have recently determined A, 
for selected values of u* and /3. Their results with u* = co are shown in figure 9. The 
corresponding results for u* = 0 as obtained from the numerical results for effective 
conductivity with k , / k ,  = co as given by Sangani & Yao and using (3.71) are also 
shown. The comparison of these direct numerical simulations with the asymptotic 
expressions for A, obtained here shows that the latter yield reasonable estimates of 
Av up to about /3 = 0.2. 

In figure 10 we have compared the speed of sound calculated by substituting the 
above estimates of A, in 

(3.85) 

with the experimental values reported by Micaelli (1982). (Actually the data were 
taken from Caflisch et a2. (1985b) who have reproduced them from the original work 
of Micaelli.) In these experiments, P, was about 1.12 bar, the radius of the bubbles 
was about 2 mm, and the frequencies v were in the range of 2&80 Hz (1 Hz = 27c s-l). 
Of course, pL = 1 g/cm3 and y* x 1.4. If we take t~ = 70 dynes/cm, then t ~ *  is in 
the range 0.55-0.03 and w, is in the range 0.012-0.05. We see that the agreement 
between the theoretical expressions derived here with u* = co and w, = 0 and the 
experimental data is very good for ,%values up to about 0.15 (beyond which 
experimental data are not available). In  addition, we have also shown the estimates 
of C,, as obtained from the results of direct numerical simulations of multiparticle 
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interactions for A, given in figure 9. In the absence of coalescence or other nonlinear 
effects, A, determined from these numerical simulations are expected to yield 
estimates of C,, that are valid even when /3 is not small (w, must, of course, be small 
and u* values above 0.109 for their validity). From these estimates, it is evident that 
the speed of sound does not vary significantly in the low-frequency regime for 
/3-values in the range of about 0.1 to 0.5. In this range, the compressibility of the 
mixture increases roughly by a factor of 5 but the decrease in the relative 
acceleration of the bubble reduces the factor 1 -A,P by roughly the same amount, 
resulting in a nearly constant effective speed of sound over a wide range of /3. 

Finally, we note that although our theory, which ignored the damping due to finite 
viscosity or thermal effects, suggested that A, should become very sensitive to the 
variations in u* when the latter is smaller than 0.15, there does not seem to be any 
evidence of the resonance effects in the experimental data of Micaelli (1982). 

3.3.3. Effects of buoyancy 
In the calculations presented so far we have ignored the effects of viscosity, 

surface-active impurities, buoyancy, and nonlinearities due to finite-amplitude 
deformations and coalescence. The effect of slight viscosity and non-adiabatic 
changes will be discussed in the following two sections. Here we discuss briefly the 
effect of buoyancy as its effect is relevant to the discussion of experimental data 
reported by Micaelli. 

Buoyancy can affect our results in a number of ways. These include its effect on 
the shape of the bubbles, the conditional pair probability density function P,, the 
distribution of surface-active impurities on the surface of the bubbles, and the 
generation of the base flow around each bubble, which, in turn, interacts with the 
flow due to acoustics. The bubbles in Micaelli’s experiments were 2 mm in radius and 
the deformation of bubbles of this size rising under gravity is generally significant. 
Here, however, we shall concentrate only on the effect of flow generated due to 
buoyancy. Thus, we shall assume that surface-active impurities are absent and that 
the bubbles rise under the influence of buoyancy keeping their shape nearly 
spherical. 

If we denote the base flow and the pressure distribution generated due to the rise 
of the bubbles by ( v ,  q), ignore the compressibility of the liquid and nonlinear effects, 
and take We % co, then the momentum and continuity equations reduce to 

pL(l -g) [iwii+V.(iiv+(iiv)+)]+Vrj = 0, 

9 - (iw1; + v -  V$ + u - VB) + V - ii = 0, 
YP, 

(3.86) 

(3.87) 

where g, as before, is the generalized function whose value is unity inside the gas 
bubbles and zero outside, and ii and 1; are the amplitudes of the velocity and pressure 
fluctuations due to sound waves. If the average rise velocity of the bubbles is V ,  then 
the relative magnitude of the second term inside the square brackets in (3.86) 
compared to the first term in that equation is O( V/Rw), which can be large depending 
upon R and w .  If we assume that V is determined by the balance of buoyancy and 
viscous drag (drag = 127rpVR, where p is the viscosity of the liquid) under conditions 
of nearly potential flow, then for the conditions under which Micaelli’s experiments 
were conducted, i.e. R = 2 mm and w = 125-500 s-l, V/Ro is about 10. Thus there is 
no reason a priori to believe that the buoyancy had a negligible effect on the effective 
speed of the sound measured by Micaelli. The details of the analysis are presented in 
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Appendix B where we show that the primary effect of the buoyancy at O(P)  is to 
reduce the resonance frequency of the bubbles. Thus the factor (l--0;) is now 
replaced by (1 - (1 +B2) w i ) .  With w, of approximately 0.03, this corresponds to a 
correction factor of about 10 %. The O(P) coefficient of A, will also vary with B but 
its determination as a function of B will not be pursued here. 

4. Viscosity effects 
In $ 3  we found that the resonance due to a pair of bubbles occurs at frequencies 

lower than the natural frequency of the bubbles and leads to infinite estimates of A ,  
and A, a t  frequencies other than the natural frequencies. Near such resonance 
frequencies, however, the damping due to viscosity can play an important role and 
hence we now analyse the effect of viscosity on the ensemble-averaged equations and 
the estimates of A, and A,. We shall continue to assume that the compressibility of 
the liquid may be regarded as negligible. To simplify the calculations, we shall also 
assume that the viscosity of the gas is negligible. We therefore write the viscous 
stress in the medium as 

T =y(1-g)[Vu+(Vu)+-$/V.u], (4.1) 

where p is the viscosity of the liquid and /is the unit tensor. Note that since the liquid 
is regarded as incompressible and since the viscosity of the gas is assumed to be 
negligible, we can alternatively express T without the last term on the right-hand side 
of (4.1). Both expressions are equivalent and yield the same final result upon taking 
ensemble averages. The average viscous stress is given by 

T, = y ~ V u , + ( V u , ) + - $ / V ~ u , ~ - ~ ~  [Vu,+(Vu,)+-~/V.u,]d~:.  (4.2) 

Inside the bubble, u1 is still given by VQ),, with Q), given by (3.34), so that it can be 
readily seen that the integral on the right-hand side of (4.2) is O(E,,) (cf. (3.34)), 
which is O ( k 2 ) .  Neglecting this small term, the ensemble-averaged continuity and 
momentum equations are now given by 

vb s $ R  

au0 
P L (  1 - A, PI at + VP, -y(V2u, + p v .  24,) = 0, (4.4) 

where A, and A, are now functions of viscosity and we have neglected A,, as 
We x co. Eliminating u, from the above equations, we see that p, satisfies the 
wave equation and that the dispersion relation is now given by 

(4.5) 

It should be noted that the term VV.u, in (4.4), which resulted from keeping the term 
V-u in (4.1), is actually an O(p)  quantity as can be seen from (4.3). If we had chosen 
to estimate the viscous stress by its alternative expression without the V-u term in 
(4.1), then we would have found the term containing the integral over the volume of 
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the bubble in (4.2) to be proportional to the pressure inside the gas bubble, and then 
evaluating that integral in terms of A, would have given exactly the same expression 
as (4.4) derived here. 

4.1. Viscous corrections to the O( 1) estimates of A, and A, 
We now determine the corrections to the 0(1) estimates of A, and A, when the 
viscosity of the liquid is not negligible. Neglecting the two-bubble interaction terms, 
the conditionally averaged continuity and momentum equations with one bubble 
fixed at x, satisfy, for x outside the bubble, 

v-ti, = 0, (4.6) 

(iwp, -pV2)  ti, + V$l = 0. (4.7) 

We shall assume that there are no surface-active impurities at the bubble surface so 
that the tangential stress there is zero. The solution of these equations yield 
estimates of A, and A, as 

A, = Y 
y *[ 1 - w:( 1 - 4ip*)] ’ 

wR2p, i a2R2 = i- = - 1 + aR + +a2R2 + ia3R3 
A, = 

1 + aR + h 2 R 2  + &a3R3 ’ P P* ’  
(4.9) 

where p* = ,u/(wR2pL) is the non-dimensional viscosity of the liquid. It may be noted 
that A, approaches unity in the limit p* + 00, corresponding to no relative 
acceleration of the bubble with respect to the mixture for very viscous fluids, and to 
3 + 36i,u* for small p* or nearly inviscid flows. Miksis & Ting (1987) have examined 
the viscous effects for very small w, and k in which case, once again, A,+ y / y *  for 
all values of p and the dispersion relation (4.5) to 0(p2)  can be determined solely from 
the O( 1) estimate of A, obtained here. These authors considered a more general case 
by including the finite viscosity of the gas, but their results agree with those derived 
here upon setting the gas viscosity to zero. 

4.2. Viscous corrections to the O(p) estimates of A, and A, 
The viscous corrections obtained in the previous section are valid for arbitrary values 
of the non-dimensional viscosity p*. We are now interested in determining the 
corrections for higher-order terms in /3 when p* is small. It is customary to employ 
the energy dissipation method to estimate the small viscosity corrections, as was 
done by Levich (1962), who used it to estimate the viscous drag force on a single 
bubble. Using this method, for example, it  is easy to show that, for a single bubble, 
A, +. 3 + 36&* + O(,u*$, which is in accordance with the analysis of the previous 
section. The presence of slight viscosity is only important very close to the surface 
of the bubble where the tangential stress must be zero (Batchelor 1967). The 
potential flow approximation, which is very accurate for most regions of the flow, 
yields a non-zero estimate of the tangential stress at  the surface of the bubble so that 
a modification to the stress components is needed near the surface of the bubble. 
This slight modification, however, makes a negligible contribution to the overall 
dissipation, which can thus be evaluated from the potential flow approximation. 

For the case of a pair of two bubbles which are simultaneously undergoing volume 
and displacement oscillations and for the case of finite surface tension, it is difficult 
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to use the dissipation method, and so we devise a different method for estimating 
directly the viscous drag on the individual bubbles. The method presented here is 
also useful in calculations involving more than two bubbles as the dissipation method 
in that case cannot be used to estimate the viscous drag on the individual bubbles. 
A method for directly evaluating the viscous drag has also been presented recently 
by Kang & Leal (1988) who used it to study the deformation of bubbles under an 
axisymmetric straining flow. 

Let us start by examining the interaction of two bubbles placed in a viscous liquid. 
The velocity and pressure satisfying (4.6) and (4.7) for this problem can be 
determined from (see, for example, Kim & Russel 1985a who solved a similar 
problem involving an interaction of two spheres in a Brinkman medium) : 

2 - 1  

'CI'PL q-1 

G = - V $ + C  { v x v x [ ( x - x q ) 6 q ] + v x [ ( x - x ~ ) ~ q ] } ,  

with the pressure field #, poloidal field 6*, and toroidal field iq satisfying 

(4.10) 

(4.11) 

Here we have dropped the subscript 2 (for the two-bubble conditional fields) on the 
velocity and pressure fields for brevity. The conditionally averaged 1;, actually 
satisfies the Helmholtz equation instead of the Laplace equation shown here but, as 
we shall see presently, the calculations presented here are needed only for determining 
the higher-order reflections in the two-bubble interaction problem, and the Laplace 
equation provides adequate accuracy for estimating these higher-order reflections. 
Now the poloidal and toroidal fields can be expanded around the centre of each 
bubble in terms of modified spherical Bessel functions kn (Abramowitz & Stegun 
1972) as 

8, = C bQ,, kn(as,) Pr(cos8)eim$, (4.12) 
m n  

n-0 m--n 

(4.13) 

where sq is the radial distance measured from the centre of the bubble a t  x,. The 
coefficients bim and cQnm together with the coefficients in the expansion of 1; in 
spherical harmonics can then be determined from the boundary conditions on the 
surface of each bubble after making use of the appropriate addition theorems for the 
modified spherical Bessel functions or numerically by a collocation technique, as was 
done by Kim & Russel (1985~) .  The analysis for the case of small viscosity (large a) ,  
however, is considerably simpler as we can then make use of the fact that the 
functions kn decay exponentially and hence the poloidal and toroidal fields of one 
bubble do not influence the velocity field near the surface of the other bubble (unless, 
of course, the two bubbles are nearly in contact). In  other words, these fields for each 
bubble are important only in thin boundary layers surrounding each bubble. Since 
the pressure, on the other hand, satisfies the Laplace equation, its variations occur 
on a lengthscale comparable with the separation distance between the bubbles. Thus 
we expand the pressure field in a regular perturbation series in powers of,u*i as 

Further details of the calculations are given in Appendix A where we show that 1;' 
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vanishes for a bubble surface free of surface-active impurities and that the boundary 
conditions for $?O and s2 on the surface of the bubbles are given by 

(4.15) 

$ i , + f ( n ) R e  = 2i [ R 2 - + n ( n + l ) f ( n ) ( $ : m - R F ) ] ,  w; (4.16) 

where f(0) = l/o: and f(n) = a*[n(n+ 1)-21 for n 3 1. Here $,,m is related to the 
expansion of $ near the bubble at  xq by means of 

m n  

(4.17) 
n-0 m-n 

It is easily seen that the boundary conditions (4.15) for $O are the same as given by 
(2.13) for the potential flow approximation. Thus the scheme for calculating the 
viscous correct,ion consists of first solving for the potential flow approximation for a 
pair of bubbles and then evaluating the right-hand side of (4.16) to determine the 
boundary conditions for the viscous correction to the pressure field. 

We now determine the viscous correction to 0(/3) terms in A,. The calculation, as 
before, consists of determining the contributions from the effective-medium and 
pairwise-interaction parts separately. The effective-medium part for the pressure 
satisfies as before (cf. (3.51)) the Helmholtz equation except that now k2 is given by 

(4.18) 

We are only interested in the spherically symmetric part of the pressure distribution 
around the bubble at  x, in determining A;. This part is unaffected by the poloidal and 
the toroidal fields and so the contribution to the normal stress from the radial flow 
near the surface of the bubble can be easily evaluated and is valid for arbitrary values 
of p*. The viscosity to be used in evaluating the normal stress at the surface is that 
of the pure liquid and not the effective viscosity of the mixture. The contributions 
from the effective medium and the finite wavelength can be calculated by replacing 
to in (3.52) by t,. An extra term equal to  -2ip* now arises due to the different normal 
stress condition. Similarly, the calculation for the pairwise interactions can also be 
carried out and the resulting expression for A, is 

with A,, given by 

(4.19) 

(4.20) 

Here C,, is the contribution from the fourth and higher-order reflections in the two- 
bubble problem that can be expressed as C,, = Q, + ip*Ctx, with Q, being the same 
as that obtained from the potential flow approximation in $3 (cf. (3.63)) and Ctx the 
correction due to small p*. 

It may be noted that in evaluating all the terms in (4.19) and (4.20), except for the 
evaluation of the higher-order reflections (Cex), the flow near each bubble may be 
approximated as radial. For all of these radial flow terms, the toroidal and poloidal 
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FIGURE 11. The O(p*)  viscous correction t o  C,, for r* = co. 

fields do not contribute. Thus they are all exact for arbitrary values of p* and the 
approximation of small viscosity is used only in evaluating C,,. Also since these 
reflections decay as l/S4 or faster, we can approximate the Helmholtz equation for 
g2 by the Laplace equation and this justifies our ignoring the k2g2 term in (4.11). 

4.2.1. Numerical results for the viscous correction to the O(p)  coeficient of A ,  
To calculate the viscous correction to C,,, t, and A:, are first expanded for small 

p* as 

* = t,-44iti,~~*+O(p*~), 4 t, = 
l-w;+4ip w, 

A:, = A;b' + ip*Aib' + . . . , 
and substituted in the expression for C,, to obtain 

(4.21) 

(4.22) 

(4.23) 

where C:, is the same as the potential flow contribution calculated in $3. Now C;, can 
be calculated either by the method of successive approximations, in which both A;bl 
and Aibl are expanded in inverse powers of S' and each term then analytically 
integrated to yield a series expansion for C;, and C:,, or by the method of direct 
substitution in which both A;bl and Aib' are evaluated directly for each S separately 
and then the integration carried out numerically using Simpson's rule. The method 
of successive approximations converged rapidly for w, less than 0.8 and the results 
for u* = 00 are shown in figure 11. The viscous correction to C,, increases rapidly 
beyond w, of approximately 0.6, and, in fact, diverges as w, approaches 0.828, 
corresponding to a pair of nearly touching bubbles a t  their resonance frequency. 
This, however, does not imply that A ,  diverges in the presence of viscosity. In fact, 
we expect the viscosity to act as a damping mechanism, and thus to yield a finite 
estimate of A, a t  all frequencies. The difficulty arises here because we are trying 
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to evaluate the viscosity correction as a regular perturbation over the inviscid 
estimate of A,. To obtain therefore a finite estimate of A, for 0 < w,,-w, 4 1, with 
w,, = 0.828, we must retain the viscous correction to Aio in the denominator, i.e. 
write Ai, /Rt ,  as 

1 A00 - 
Rt, 1 - t , f ( X ' )  

where f(S') = fo(S') + ip*f2(S'), and fo, f,, fk, etc. are evaluated a t  S' = 2. Now the 
leading-order terms in the denominator of the term on the far right of the above 
equation can be expressed as 1 -w,2[1+ fo(2)] = 2A/w,,, where A = w,,-w,, so that 
the integral in (4.23) diverges logarithmically for small ,u* and A a t  the lower limit 
S' = 2 as 

(4.25) 

The constant - 12f,/f; is same as B,  in (3.66) and equals 28.75 for v* = 00. Thus we 
see that C,, and hence A, are finite even a t  A = 0 when the viscosity is finite. It is also 
clear from the above calculation that if we treat the viscosity as a small term and 
expand Aoo/Rt, for small viscosity first and then evaluate each term separately, then 
each of the terms in the expansion will diverge a t  A = 0. The results presented in 
figure 11 are thus useful only for w, much smaller than 0.828. 

The difficulty becomes more severe for w, > 0.828 for which there is always a pair 
of bubbles having a separation distance between 2R and co that  resonates. As seen 
in $3, there is an 0(1) imaginary contribution to  C,, even when p*+O in this case 
that results upon using the principal value of the integral in evaluating C,,. To 
evaluate the O(,u*) correction, the expression similar to  (3.68) must now be expanded 
to O(p*)  (or O ( r )  in (3.68)) and the appropriate corrections must be made to  the 
integrand in (4.23) to subtract its singularity, which is now proportional to 
l/(S' Such calculations, however, have a limited utility as this O(,u*) 
correction will again diverge as w,+0.828, and therefore we shall not present these 
results. 

Since it is not possible to obtain O( 1) and O(p*)  estimates of C,, that  are uniformly 
valid for the complete range of w,, it is perhaps best to evaluate C,, directly for 
selected values of ,u*. The procedure for evaluating such viscous corrections to A,  is 
to first evaluate Aio numerically for selected values of ,u* and S' and then to compute 
the integral in (4.23) numerically. It is important in this calculation to  keep the term 
that corresponds to the viscous correction to At,/Rt, in the denominator. Thus after 
determining A:bl and A&l for each S' for a selected value of w,, the integrand in (4.23) 
is expressed as 

I+&+-+---= t: t; At0 - ~,-i ,u*~,+ ... x (4.26) S' S2 K3 Rt, 

where I, and I, are the coefficients of 0(1) and O(,u*) terms in the expansion of the 
term on the far left of the above equation and are related to A$,l and Aibl. Note that 
although both I ,  and I, taken individually diverge a t  0, = 0.828, the term on the far 
right of the above expression remains finite. 

The estimat,es of C,, for small but finite ,u* obtained by the above procedure are 
shown in figures 12 and 13. Note that ,u* = ,u/(oR2pL) can be expressed as ,u?/w,, 
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FIGURE 12. The real part of C,, as a function of w, for u* = co. The solid curve corresponds to the 
calculations of $ 3  with ,u,* = 0 and pluses and stars correspond to those for finite values of ,uz. 
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FIGURE 13. The imaginary part of Cex/p* as a function of w, for u* = 00. The solid curve is the 
asymptotic result for small ,@ and pluses and stars are with small finite values of ,a:. 

where p: = y/(3y*p,R2P$ is the non-dimensional viscosity based on the natural 
frequency of the bubbles. For an air-water system a t  atmospheric pressure p: 
roughly equals lOP3/(2R), R being in mm, so that p: is in the range 0.14.001 for 
bubbles with radii in the range 0.005-0.5 mm. The solid curves in figures 12 and 13 
are obtained by the method of successive approximations for p* --z 0 whereas the 
stars and pluses are obtained by the direct substitution method for various values of 
p:. We see that the results for p: = 0.001, which correspond to bubbles with radius 
of about 0.5 mm, have been approximated quite well by the asymptotic results for 
small y:. On the other hand, the damping is quite significant for p* = 0.1. We see 
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FIGURE 14. The O(,u*) correction to the O(p) coefficient of A, as a function of (T* for small w,. 
This correction diverges for a range of (T* values around each critical (T:. 

that there is a, substantial decrease in C,, and hence A ,  for w, near 0.828 even in the 
presence of viscous damping for bubbles that are greater than say 0.5 mm. 

4.3. The viscous correction to the O(p)  estimate of A, 
When w, is small, we can determine the effective speed and attenuation to O(P3) 
simply by determining A, correct to 0(,8), and therefore in this section we shall 
present the results for the viscous correction to the O(p) coefficient in A,. Following 
the same procedure as in $3.3, we can show that A, is given by 

(4.27) 

where gll and go, are now functions of p* in addition to S' and IT*. The potential flow 
approximation yields the results for A:l which were presented in $3.3 and the first 
correction due to viscosity is given by At,, which is determined by expanding gol and 
gll in a power series of p*i. Detailed numerical calculations gave A:, equal to - 38 and 
- 18 for g* equal to 00 and 0. The calculation for the case of u* = 0 was slightly 
difficult computationally as the pair of nearly touching bubbles made a significant 
contribution to the overall value of the coefficient. The pressure distribution on the 
surface of the bubbles becomes uniform when a * + O .  It can be shown that the 
viscous dissipation in the gap between nearly touching bubbles is very large in this 
case and that the dipole strengths of the bubbles (or, equivalently, go,) become 
O( 1/(  (8'- 2)2 In (s' - 2)) as S' + 2. The presence of the logarithmic term is important 
in making the overall integral in (4.27) convergent, but it also makes the exact 
determination of the coefficient A t ,  somewhat difficult. We estimate that the result 
A:, = - 18 is therefore correct only to within f 10%. 

The variation of Atl  for intermediate values of u* is not gradual as in the case of 
A:l owing to the shape-dependent resonances. The results for u* in the range 
0.044.20 are shown in figure 14. There is no significant change in A t ,  as v* is varied 
from co to about 0.12. Upon further decreasing u*, however, A:, decreases rapidly 

I A, = 3 + 36ip* + 3,8 -2( 1 + 24ip*) + [2g1, -gol - 3( 1 + 12ip*)] s'' ds' { J: 
= 3[1+ 12ip*+/3(A~,+ip*A~,)], 



266 A .  S. Sangani 

2'o L 

pf = 0.01 

-l.oL-- -2.0 0.06 0.08 0.10 U* 0.12 0.14 

FIGURE 16. The imaginary part of A,, as a function of u* and p* 

and diverges a t  cr* = 0.109, corresponding to the pair of touching bubbles resonating 
with a P,-mode deformation. Thus, once again, it is not possible to obtain a uniformly 
valid O(p*) correction to A,, for the complete range of CT* and, as in the case of A,,, 
it is probably best to estimate A,, by the direct substitution method for selected 
values of p*. The results of such computations for p* equal to 0.01 and 0.001 are 
shown in figures 15 and 16. From these calculations we see that for bubbles of size 
greater than about 1 mm, the viscous damping is small and therefore the influence 
of shape-dependent resonances on A,, can be quite significant. 

We have examined in this section the viscous effects for the case when the surface- 
active impurities do not significantly alter the nature of the interface between the gas 
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and liquid. For small bubbles, the surface-active impurities usually present in 
gas-liquid mixtures will have the effect of making the interface appear rigid, and, 
instead of the zero tangential stress boundary condition used here, we must apply the 
no-slip boundary condition a t  the bubble surface. The corrections to A, and A, are 
then O(p*$. Once again, the method presented here can be applied with a slight 
modification to determine the viscous corrections in this case, but we shall not pursue 
these calculations here. More detailed calculations of the viscous effect including the 
multi-bubble interactions in non-dilute bubbly liquids are presented in Sangani et al. 
(1991) in which calculations are also made for the case of bubbles satisfying the no- 
slip boundary condition. 

It may be noted that the viscous damping is the most significant attenuation 
mechanism when w, is small. This is because the acoustic radiation damping is 
proportional to the effective wavenumber which becomes vanishingly small in the 
limit of small Q, and the thermal effects, being dependent on the volume oscillations 
of the bubbles, also become unimportant, at small w,. Thus the attenuation of sound 
waves at small frequencies can be determined simply from the imaginary part of A, 
as determined from the viscous effects. 

5. Thermal effects and attenuation 
In  this section we wish to determine the attenuation of sound waves by including 

the pairwise interactions of bubbles in our analysis and then compare i t  with the 
experimental data available in the literature. Since the attenuation due to non- 
adiabatic thermal effects is significant for many of the experimental data presented 
in the literature, we shall first present briefly an analysis to include the thermal 
effects. Our interest is mostly in comparing the attenuation data for frequencies 
comparable with the natural frequency of the bubbles. Of course, close to resonance 
the nonlinear effects due to  finite deformation of bubbles or coa,lescence may also 
become important but we shall not account for these effects here. Our calculations 
can be expected to apply when the intensity of sound waves is small and the damping 
due to  various mechanisms is of sufficiently large magnitude to keep the deformations 
relatively small. 

5.1. Thermal eflects 

While the energy changes during sound wave propagation in a single-phase medium 
can be regarded as adiabatic to  a very good approximation, they are not so in the 
case of gas-liquid mixtures. This is because there is a net exchange of energy between 
the two phases during each cycle of the volume oscillations of the bubbles owing to 
the different surface areas of the bubbles at their maximum and minimum radii. 
Since the thermal diffusivity of the liquid is typically much greater than that of the 
gas (the ratio being about lo3 for the air-water system), the temperature variations 
in the liquid are negligible compared to  those inside the gas bubbles. We shall 
therefore take 5?, the amplitude of the temperature variation, to equal zero in the 
liquid. Thermal effects are important then only in determining the density derivative 
8pp/at inside the gas bubbles. To include these, we must f i s t  solve the energy and 
continuity equations inside the gas bubbles and then evaluate the density derivative 
to be used in taking the ensemble average of the continuity equation (cf. (2.1)). The 
analysis of thermal effects a t  the 0(/3) approximation to CEf has been given by a 
number of investigators in the past (see, for example, Miksis & Ting 1987b; 
Prosperetti 1984). Miksis & Ting used the homogenization method and derived an 
expression for the effective speed and attenuation by including the thermal effects in 
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both liquid and gas phases. The thermal conductivity of the liquid is usually large 
and therefore we shall assume the liquid temperature to remain unchanged. This 
yields the problem of including the thermal effects in pairwise interactions as 
particularly simple as one needs to  solve for the temperature field only within one 
bubble, and in what follows, we shall adopt the approach taken by Prosperetti (1984) 
to do this. 

The linearized energy equation for a compressible fluid is given by 

p 0 aT p a t  
c - (pT)+E a * ~ + c , p T V - u =  kV2T, 
pa t  

where T is the absolute temperature, c p  is the constant-pressure specific heat of the 
gas, and k is the thermal conductivity of the gas. Now we follow Prosperetti (1984), 
and eliminate the V . u  term in the above equation by combining it with the 
continuity equation (cf. (2.1)) to obtain 

where we have used the relation (ap/aT), = -p/T for an ideal gas. Since the pressure 
inside the gas is a function of time alone, the above equation can be readily 
integrated, and, using the boundary condition that f’ = 0 a t  the surface of the 
bubble, we obtain 

where k* is the non-dimensional thermal conductivity of the gas and s is the distance 
measured from the centre of the bubble. Thus we see that the uniform pressure 
within the gas bubble gives rise to a purely radial or spherically symmetric 
temperature distribution within the bubble. Now, upon multiplying the continuity 
equation (2.1) with pTc,, combining i t  with the energy equation (5.1), and making 
use of the relation cppT = yPe/(y - 1) for ideal gases, we obtain 

i ap y - i  
kV2T+V*u = 0. 

YP~ at YPe 
(5.4) 

Upon integrating the above equation we obtain the velocity field inside the gas 
bubble as 

where 6, is the amplitude of the pressure variation inside the bubble and u’ is the 
spherically non-symmetric part of the velocity field within the gas bubble. Since the 
temperature is a function of s alone, it influences only the spherically symmetric part 
of the velocity field. I n  other words, the non-adiabatic effects only influence the 
boundary condition for the spherically symmetric part of the pressure and velocity 
fields on the surface of the bubbles. Introducing a complex quantity X as given by 

S = 3y[1-3(y- 1 )  ik*{(i/k*)icoth (i/k*)i- l}]-’, (5.6) 
and denoting the spherically symmetric part of the velocity field by uro0, we obtain, 
by combining (5.3) and (5 .5) ,  

. -  

(5.7) 
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We note that & is a real quantity in the two limits of small and high frequencies and 
equals 3 and 3y, corresponding, respectively, to the isothermal and adiabatic 
changes. Now since the spherically symmetric part of the velocity in the 
incompressible liquid near the surface of the bubble can be taken as A / s 2  and the 
pressure as $ = $, + iwp, Als ,  $, being the amplitude of the pressure variation in the 
absence of the bubble and A being equal to uro0 R2, the spherically symmetric part 
of the normal stress boundary condition at the bubble surface can be expressed as 

Now taking the ensemble average of the continuity equation (2.1), evaluating 
the integral of the density derivative over the volume of the bubble from the 
surface integral of u-n, and comparing the resulting averaged equation with 
A, &&J(yPe) + V -1, = 0, we find that A, to the leading order in /3 is now given by 

(5.9) 

where the wet, the resonant frequency including the non-adiabatic effects, and the 
damping parameter b are given by 

(5.10) 

(5.11) 

Here ZR and XI denote, respectively, the real and imaginary parts of Z (cf. (5.6)). 
Since non-adiabatic effects only influence the spherically symmetric part of the 
velocity near the surface of each bubble, A, is unaffected and thus the effective speed 
can now be evaluated by making use of (2.29), (3.37), and (5.9). 

The determination of the O(b) correction to A, accounting for viscous and non- 
adiabatic changes is now straightforward. Although the pressure inside the gas 
bubble is uniform, the density derivative is not, owing to non-uniform temperatures. 
Thus the finite wavelength contribution is different from previous calculations and 
(3.19) must be used t o  evaluate it. The resulting expression is 

- 2ip* + ti(3.899 11 ++In t.)] + C,,, 
Y 

(5.13) 

where t -  4 (5.14) * - 1-w:t(1-ib)7 

w:t = w2/wEt, w:* = w2/w:* ,  (5.15) 

.xl = k*2 [ 1 + &-{(A- + (by} ~ 0 t h  (by], (5.16) 
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w,, is a complex quantity defined by 

(5.17) 

and C,, is the contribution from the fourth- and higher-order reflections in the two- 
bubble interaction problem, i.e. 

(5.18) 

As in the case of calculations for the corrections due to the viscous effects, we 
can once again evaluate C,, by expanding Ato for small viscous and non-adiabatic 
(HI P,/(pLw2R2))  terms, but the utility of such expansions will be limited as they will 
diverge as wrt + 0.828. It is therefore best to evaluate C,, directly for selected values 
of the physical parameters (k* ,p* ,wr t ,  etc.) by first evaluating Ato as a function of 
s' and then numerically integrating (5.18). We shall do t.his in the next section. 

5.2 .  Comparison with experiments 
Data on the phase speed and attenuation of sound waves in bubbly liquids have been 
presented by a number of investigators (Carstensen & Foldy 1947 ; Silberman 1957 ; 
Fox, Curley & Larson 1955; Kol'tsova et al. 1979; Ruggles, Scarton & Lahey 1986). 
Most of these data are for very low volume fractions of gas, typically less than 0.01, 
except for those reported by Ruggles et al. (1986) who presented the results for /I up 
to about 0.2. An extensive comparison between the leading-order theory for bubbly 
liquids that takes into account the interaction between a single bubble and the 
mixture, such as those due to Foldy, with the experimental data has been made by 
a number of investigators. (See, for instance, the review art.icle by van Wijngaarden 
1972; Ruggles et al. 1986; and Commander & Prosperetti 1989.) The agreement 
between the leading-order theory and experiments is generally good for frequencies 
small compared to the resonance frequency. At frequencies close to resonance, 
however, the theory predicts attenuation which is generally 4-6 times greater than 
the measured attenuation even for /I-values as low as 0.005. Recently, Commander 
& Prosperetti (1989) have made a very careful analysis of the data and examined the 
possible effects of the size distribution of the bubbles, the hydrostatic head, etc., and 
found that none of these factors can be responsible for such a large discrepancy 
between the experiments and theory. These investigators offered an explanation that 
the contribution due to the pairwise interaction between the bubbles, which was not 
included in the leading-order theory, may be quite significant near the resonance 
frequency even for such low values of /I. It should be noted that accurate 
measurements near the resonance frequency with a uniform size distribution of 
bubbles are quite difficult, but i t  is generally believed that they are accurate to 
within about 50 YO. Finally, the disagreement between theory and experiments 
generally persists for larger frequencies and, for instance, a discrepancy by a factor 
of 2-3 exists even a t  frequencies as high as five times the resonance frequency. 

In  view of the above discussion it is important to  see if the theory presented here, 
which includes the pairwise interactions of bubbles, can reduce the discrepancy 
between theory and experiments a t  frequencies close to and above the resonance 
frequency. Moreover, the only experimental data at relatively high volume fractions 
have been presented by Ruggles et al. (1986) as mentioned earlier, but their data is 
only for low frequencies where the existing theories had already been shown to agree 
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with the experiments to within 10 YO, and, therefore, a comparison of the O(pz) theory 
presented here with their data would be uninteresting. We therefore focus on the 
data for attenuation presented by Silberman (1957), which are also probably the 
most reliable in terms of uniformity of the size distribution of bubbles. The largest 
volume fraction considered by this investigator was 0.01 and we shall compare the 
theory and experiments only for this particular value of p. 

The data on attenuation are usually reported in dB per unit length, which is 
related to the imaginary part of the effective wavenumber by 

A = (2010g,,e)v = (8.68589)v, (5.19) 

where v is related to  z by means of 

z w  
= u-12). - 

R - C , ,  (5.20) 

The radius of the bubbles in Silberman’s experiments was about 0.26 cm. The 
corresponding resonance frequency is estimated to equal about 1.25 kHz. Since we 
wish to compare various theories with the experimental data, let us briefly 
summarize the various expressions obtained so far. 

I n  our theory there are three principal mechanisms that make the effective 
wavenumber a complex quantity when or is less than unity: viscous, thermal, and 
acoustic. For a single bubble the relative importance of these are estimated from 

(5.21) 

where b,, b,, and b, correspond, respectively, to the viscous, thermal and acoustic 
damping. The relative magnitudes of these three damping mechanisms for the 
experimental conditions of Silberman are shown in figure 17. The thermal damping 
is most significant a t  low frequencies but becomes of the same order of magnitude as, 
or lower than, the acoustic damping beyond the resonance frequency. We also see 
that the viscous damping for the frequency range of interest is negligible. (For 
smaller bubbles and larger frequencies, however, all three mechanisms can be 
significant. ) 

The above discussion applies mostly to w, < 1. As mentioned in the Introduction, 
C,, and hence z are complex even in the absence of viscous, thermal, or acoustic 
radiation effects when the frequency is greater than the natural frequency of bubbles 
owing to the negative apparent compressibility of the bubbles a t  frequencies greater 
than their natural frequencies. As seen from the Foldy’s expression ( l . l ) ,  the 
compressibility of the liquid will eventually become important a t  sufficiently large 
frequencies and C,, becomes real a t  high frequencies. The balance of the two 
compressibilities occurs at w, x (ppL C2,/yPe)$, which for an air-water system with 
/? = 0.01 occurs a t  w, of about 10 (or a frequency of about 12 kHz for bubbles of 
0.26 em). 

We now summarize the various expressions for determining the attenuation. The 
leading-order Foldy theory, which takes into account the interaction of a single 
bubble with the wave, gives 

(5.22) 
w2 

WEt -w2[1 - i(b, + b, +b,)]  ’ 
z2 = zL+3p 

where zL = wR/CL is the wavenumber based on pure liquid speed. The contribution 
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FIGURE 17. Relative magnitudes of the viscous (v) damping, the acoustic radiation damping based 
on the speed of sound in pure liquid ( I ) ,  the acoustic radiation damping based on the effective speed 
in the medium (e), and the thermal (t) damping for the experimental conditions of Silberman 
(1957). 

from the finite compressibility of the liquid is important a t  large w, and therefore we 
shall include the z i  in our calculations. (As mentioned above, the two terms on the 
right-hand side of the above equation are comparable in magnitude for w, = 10 for 
p = 0.01 .) 

At the next approximation, z2 correct to O ( p )  is given by 

22 = z;+ 3/3w't [I  -izt,+0(/31n/3)1 x z i +  3 / 3 4  (5.23) 
1 - wit( 1 - ib) 1 - wft(  1 - ib - iz) ' 

where b = b,+b,. In other words, the acoustic damping based on the pure-liquid 
wavenumber is replaced by the effective-medium wavenumber. In the above 
expression z on the right-hand side must be actually evaluated from the 0(/3) theory 
as given by (5.22). However, the difference between the 0(/3) and O(@)  estimates of 
z2 can be quite significant near resonance and therefore it is perhaps more accurate 
to  solve for z from (5.23) in a self-consistent manner. The predictions of these O(p) 
and O ( @ )  theories are shown in figure 18 by the dashed and dashed-and-dot lines, 
respectively. The experimental data of Silberman are shown by stars. We note that 
the measured values of attenuation in dB/cm a t  about 1 and 1.4 kHz are about 1.3 
and 4.3, respectively. The corresponding values predicted by the 0(/3) theory are 
about 0.27 and 12.1, and those from the O(& theory are about 1.3 and 7.9, 
respectively. In  fact, very close to resonance (1.25 kHz), the O(B) theory yields an 
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FIGURE 18. The attenuation of sound waves as a function of frequency for /3 = 0.01. The 
experimental data of Silberman (1957) area indicated by stars, the solid curve is due to the 0(/3') 
theory, the dot-and-dash curve to the O(p) theory, and the dashed curve to the O(B) theory. 

estimate of A equal to about 25dB/cm, compared with an estimate of about 
5.6 dB/cm from the O(@) theory. Although the experimental value a t  this frequency 
is not reported, it ap ears from figure 18 that i t  is likely to agree very well with the 
prediction of the O($) theory. Thus we see that the O(@) theory, with z estimated 
in the self-consistent manner, gives estimates of attenuation that are in excellent 
agreement for frequencies close to the natural frequency of bubbles, and this 
confirms our observation that one must estimate the acoustic radiation damping 
based on the effective speed of sound in the medium and not on the speed in pure 
liquid. 

The acoustic damping based on the effective speed in the medium equals Re (2) and 
the magnitude of this relative to  the other three damping mechanisms can be seen 
from figure 17. Below the natural frequency of bubbles, the acoustic damping based 
on the effective speed is an order of magnitude greater than that based on the speed 
in the pure liquid. I n  fact, close to resonance, even the thermal damping is an order 
of magnitude smaller than the effective-speed-based acoustic damping. On the other 
hand, a t  higher frequencies, while the acoustic damping based on the speed of sound 
in pure liquid continues to  increase, we see that the effective-speed-based damping 
decreases with increasing frequencies. This is because once o,.~ exceeds 1, the real part 
of z2 becomes negative and consequently z becomes a nearly imaginary quantity. 
Thus, for wrt > 1, z does not contribute much to damping. Instead it shifts the 
resonance frequency of the mixture. Of course, a t  sufficiently large frequencies, the 
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term 22 will eventually become larger than the O(p)  term and the effective-speed- 
based damping will then once again increase with the frequency. For p = 0.01, this 
happens only for frequencies greater than about 12 kHz. As seen in figure 18, the 
attenuation predicted by the O(@) theory peaks a t  about 2 kHz (u,, x 1.6), and the 
agreement between the theory and experiments is quite poor for such frequencies. 

Now we proceed to compare the data with the O(P')  theory which yielded 

z2 = 2: + 3 , 8 A , e  [ 1 - (A, +A,, +4ip*u: A,) p ] ,  
Y 

(5.24) 

where A, = 3+36ip*, A,, = 4cr*t.,,, and A, correct to O(p) is given by (5.12). The 
straightforward substitution of these coefficients into (5.24) yields rather poor 
estimates of attenuation and, in fact, yields negative values for some frequencies. 
Therefore we must recast the above expression in a different form while still 
maintaining its accuracy to  O(P'). The difficulty arises mainly because the expression 
for A, contains terms that are proportional to t i  and t i  which become very large for 
frequencies above the natural frequency of the bubbles. To suppress the relative 
importance of these terms we write the O ( / P )  correction as modifying the attenuation. 
Thus we write 

2' = z;+ 3 P 4  
1 - u;,[ 1 - i(b, + b, + bef)] 

(5.25) 

and expand the above expression for small be, so that  the resulting expression is the 
same as that given by (5.24) correct to O(p'). Writing be, = z+b,  and expanding 
(5.25) we find that 

1 - it,(z + b,) - t i ( z  + b,)' = 1 - izt.,,( 1 + inzt,) -p[$t: In p + A,, 

+A,+A,,+4ip*t.,,y/y*]. (5.26) 
Thus b, is O(p1nP) and we obtain 

PA* - t i  22 
b, = 

it.,,+2zt: ' 
(5.27) 

where A* is the term inside the square bracket on the right-hand side of (5.26). Note 
that if we regard z as an O(@) quantity, the the term 2zt2, in the denominator of the 
term on the right-hand side of the above equation is small compared to it.,, and should 
therefore be dropped. However, since t: and z near resonance are not small, we retain 
this term in the expression. (For bubbles of radius 0.26 cm and an attenuation of 
about 5 dB/cm, the imaginary part of z is about 0.2.) Similarly, we replace t.,, in the 
calculation of A* by t, as given by 

Wft  t, = 
1-wW,2,[1-i(bv+bt+z)]' 

(5.28) 

to reflect the fact that while z is an O(@) quantity, its effect for frequencies close to 
resonance can be substantial. Finally, we express the l n p  and terms that appeared 
from the effective medium and finite wavelength in terms of z (using 2' = 3/3t.,,) and 
retain the explicit dependencc of the remaining terms in terms of P to write 

1 +y-lX&l +it, + t33.3498 + In (iz)) - 2p* 
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here ln(iz) is to be calculated from 

In (iz) = Bln [R2(u2 + w 2 ) ]  + i tan-’ (u / v ) .  (5.30) 

As in the case of the O(@)  theory, z may be now determined in a self-consistent 
manner from (5.25), (5.27), and (5.29) but the estimates obtained in this manner were 
not good and hence we used z determined from the O(@)  theory fist and then used 
its value to evaluate the right-hand side of (5.25) and thereby to determine the O(p2) 
estimate of z2. The values of attenuation determined in this manner are shown in 
figure 18 by solid curves. A t  slightly above the resonance frequency, v = 1.4 kHz, 
this theory gave attenuation of about 5.4 dB/cm compared to 7.9 and 12 as given by 
O(@)  and O(p) theories respectively. The measured value is about 4.3 and thus we see 
that the 0(p2) theory gives better estimates for frequencies close to natural frequency 
of the bubbles. On the other hand, as in the case of the O(@)  theory, the predicted 
values a t  frequencies above 2 kHz (urt x 1.6) seem to give poor estimates of 
attenuation. 

Finally, it may be noted that although the number of rearrangements we have 
made to arrive a t  (5.25) with the various quantities in it evaluated as given by 
(5.27)-(5.30) seems to be the most natural way of recasting the original expression for 
z2 correct to 0(p2) ,  we have also attempted to recast the original expression (5.24) in 
a number of other ways, always keeping its accuracy to O(p2) ,  but none of these 
expressions predicted attenuation values that were in very good agreement with the 
experimental data over the complete range of frequencies. Thus it appears that the 
problem of predicting attenuation of sound waves a t  frequencies above the natural 
frequency of t>he bubbles still remains unsolved. 
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Appendix A. Details of the two-bubble interaction problem 
A. l .  The inviscid case 

For brevity, let us choose l;ae-ik.X1 = 1. Then the pressure field in the liquid is given 
bv 

where s = x-xl. Now since 1; satisfies the Helmholtz equation, it can also be 
expanded in spherical Bessel functions around the centre of each bubble. Thus the 
expansion around the centre of bubble a t  xq can be expressed as 

$9 = C [C:,j,(ksQ) +Dzm h,(ks*)]P; eim$, (A 2) 
n ,  m 

where s* is measured from x,. Since the coefficients of the regular Bessel functions (j,) 
must be related to the regular part of 1;2 a t  xq, and the coefficients of the singular 
Bessel functions (h,) to the singular part, we can obtain the relation between the 



276 A .  S.  Sangani 

coefficients in (A 1) to the coefficients in (A 2). Using the general theorems for 
integration and differentiation given in Hobson (1931), we obtain 

2(2n+l)(n-m)!  1 a a a  
Cim = ( l+Sm,)  ~ (n+m)!  (-) k (as, 7 3 a,) T('Q)? 

D:m = i( - k)n+l  A:,. (A 4) 
Now the boundary conditions (2.13) can be applied readily to the expansion (A 2), 
and (A 3) and (A 4) then yield the following relationship among A:, : 

AEm = t nm R2n+l  [ ( - i ) n Y r ( k l , k 2 , k 3 ) e - ' k . ' q + + C ~ g Q Y r Y ~ G ( k l ~ - ~ 3 - Q 1 ) ] ,  (A 5) 
r ,  8 

where Y r  Y ;  = Yr(a/as,, a/&,, a/as,) Y:(a/as,, a/as2, a/as,) is a differential operator 
of rank n + r and t , ,  are given by 

i w,2j,(z) +zj&) 
zw,2ho(z)+Zh;(z)' 

to ,  = -- z = kR,  

2(i)n-1(2n+1)(n-m)! j n ( z ) - c r*z ja ( z ) [2 -n (n+1)]  
tnm = (l+S,,)(n+m)!z2n+1 h,(z)-f~*zha(z) [2-n(n+ I) ] '  (A 7) 

Note that for q = 1 and n = m = 0 (A 5) reduces to 

which was used in the main text (cf. (3.58)). Now the above set of infinite linear 
equations in the unknowns Agm can be truncated to a finite number of equations in 
a fmite number of unknowns, and the resulting equations can be solved either 
asymptotically when the separation distance S is large and the effective wavenumber 
k is small or by the method of direct substitution for selected values of S and k .  Both 
methods were used in the study and so we shall describe them briefly, but first we 
note that we are primarily interested in solving the above set of equations when k ,  
being of O(@) ,  is small. Since S ,  on the other hand, can be arbitrarily large, we retain 
k in evaluating G ( k S )  in the above equations but take the limit k + 0 in the remaining 
terms. To leading order, t , ,  are given by 

(A 10) 

Let us first determine the solution of the problem when S is large. The equations for 
the first few coefficients are given by 

(A 11) 

(A 12) 

(A 13) 

(A 14) 

2(n-m)!  ( -  l ) n + l  1 -n[2-n(n+ l)] fT* 
(1 + Smo)  (n  + m)!  [ (2% - 1 )! ! I 2  1 - (n  + 1 )  [2 - n(n + 1 )] fT* ' tnm = 

1 

1 

a 
3% 

Ato = R t ,  1 + Aio G(kS)  + A  f0 - G ( k 8 )  + . . . , 

1 a 
as1 

[ 
[ 
[ 

A:, = R t ,  e- ik'S+Ai,G(kS)+A:o-G(kS)+ ... , 

Ato = R 3 t l o  - i k , + A ; , - G ( k S ) + . . .  , I a 
as1 

a 
as1 

-ikle-ik'S-Aio-G(k8)+.. .  . 
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These can be readily solved to obtain 

A;,=O kR3,- , ( ::) 
l + R t , G ( k S ) { e - i k ' s + A ~ , G ( k ~ ) } + O  

so that as k+O 

+ O @ r ,  (A 17) 
Ato - 1 +Rt, Ge-ik'S - _  = 1 +Rt,Ge-'k'S+R2t~G2+R3t~G3e-ik.S 
Rt, 1 - (Rt, G)' 

where G = G(kS) .  The above expression with the higher-order terms explicitly 
written wefe used in the main text (cf. (3.59)). The remainder of this Appendix is 
devoted to the determination of these higher-order terms and to the method of 
calculating the viscous correction. 

Since the higher-order terms decay rapidly enough, we are only interested in these 
terms when kS is small. Consequently, we can further simplify the calculations by 
solving the Laplace equation, instead of the Helmholtz equation for j2, subject to the 
boundary condition that 8, -+ 1 as s + a. Replacing G(kS) by 1/23 now, redefining the 
differential operator, and noting that the problem in this inner region (R < S 4 l / k )  
is independent of the orientation of the vector S, we write 

where we have chosen the two bubbles to lie on the s1 axis. Because of the symmetry 
about the s1 axis, the problem has now become axisymmetric, so that only the 
coefficients A,, with m = 0 are non-zero. Also since V2(1/s) = 0, only the first term 
in the expansion of the differential operator YE is needed and thus the differentiation 
of the basic singularity G has become relatively simple. Now, from symmetry it is 
easy to see that A: = ( - 1)" A2, = A,, and the relationship among the coefficients A, 
reduces to 

where t ,  are defined by 

rr*n[2 -n(n + l)] - 1 
a*(n+ 1)  [2-n(n+ 1)]+ 1 '  

t ,  = n 2  1. 

Now the standard procedure for calculating the higher-order reflections by the 
asymptotic method is to expand A, in powers of R / S  (for selected values of u* and 
w,) and then to solve (A 19) for each power in RIS. Since we would like to evaluate 
the reflections as accurately as possible, even near the resonance frequency, we 
modify this procedure slightly. Specifically, since the strength of the monopole A, is 
expected to become vary large near the resonance frequency, we first solve for AJA, 
in the series of RIS. Thus, writing 
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and substituting in ( A  19) for n 2 1 ,  we obtain the following recursion relation among 
the coefficients b,, : 

with b,, = do,., and b,, = 0 for q < 0 and n =k 0. Now the coefficients b,, can be readily 
computed for selected values of CT*, and A,, can be subsequently evaluated for various 
0, using (A 19) with n = 0, which yields 

where 

The resonance frequency for the pair of bubbles separated by a distance S can then 
be obtained from the relation l / to ,er i t  = C,(R/S)n. The first few C,  are listed 
below : 

c,=1;  c,=c,=o; C 4 = t 1 = - 1 ;  c,=o; C e = t 2 .  (A 25)  

Thus we obtain the following expansion for A ,  valid in the inner incompressible 
region (kS 4 1 )  : 

A R 
= 1 + t , -+  S t: @ z  + ti gy + . . . , 

Rt, 

which agrees with the uniformly valid solution derived earlier (cf. ( A  1 7 ) ) .  Finally, 
the coefficients a ,  used in the main text were obtained by taking the inverse of the 
series for A,. This series converges quickly when w, is not too close to the critical 
value for the pair of bubbles. The method of direct substitution was used whenever 
the series for a ,  did not converge. In this method, the system of equations given by 
( A  19) were first truncated to n < N ,  and the resulting equations were solved directly 
for selected values of SIR. The calculations were then repeated for larger values of 
N until A ,  converged to  a desired level of accuracy. 

A.2. Resonances of pairs of bubbles 
It is interesting to  discuss the resonance nature of a pair of bubbles. At resonance 
frequencies, the strength of monopoles for the two bubbles become infinitely large. 
If the bubbles are widely separated then we can use (A 17)  to determine these 
frequencies. Thus we find that the denominator in this equation vanishes for 
to = k l / ( R G ) .  Since to is a real quantity, we must disregard the imaginary part of G 
in determining the resonance frequencies. (The imaginary part, of course, contributes 
to the acoustic radiation damping.) Thus, for large S ,  we find the resonance 
frequencies of the pair of bubbles to be given by w,  = 1 +R cos kSI(2S). When kX is 
0(1), these frequencies are only O(kR) different from the natural frequency of the 
individual bubbles. On the other hand, the resonance frequencies of the pair of 
bubbles with S comparable with R are substantially different from the natural 
frequency but ( A  23) derived here seems to  suggest that there is only one resonance 
frequency (given by to = l / f ( S / R ) )  for such pairs. There is, of course, another 
resonance frequency but this did not appear in our calculations because in the inner 
incompressible region IcS 4 1 this resonance does not contribute a t  the leading order. 
To show this, let us consider a slightly more general case in which f iZ+pm(s) as 
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s-t  00. Then writing Ak0 = A ,  + B ,  and Ato = ( -  l), (A,-B,) ,  it is easy to show 
that A ,  and B, satisfy 

Note that the A, correspond to the strengths of multipoles for the two bubbles 
resonating in phase with each other, while the B,  correspond to those resonating out 
of phase with each other. Now (A 27) and (A 28) can be solved readily to obtain 

where f (S /R)  is the same function as given by (A 24) and g(S/R) can be shown to 
equal 

Now if we choose p m ( s )  = e-iksl, then we see that the coefficient B, is proportional to 
kS, and hence small compared to A,. Thus only the in-phase resonance of the pair of 
bubbles is important at the leading order in kR. 

A.3. The viscous corrections 
The components of the velocity in the spherical polar coordinates centred at  x1 can 
be written from (4.10) as 

1 aw 
8 sin8- s sin2 8 a@ ' 

u 1 aP 
iwp, as s sin 0 88 

where we have dropped the subscripts on @ and x and the hat on p for brevity. The 
tangential stress components are given by 

Now to satisfy the boundary condition of zero tangential stress at  the surface of the 
bubble, we note that since @ and x decay rapidly when a is large, we can replace the 
functions k,(as) in (4.12) and (4.13) by their leading-order terms as ea(R-s). By 
comparing the magnitude of various terms that appear in the boundary conditions, 
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we find that @ = O ( U - ~ )  = O(p*) and x = O(p*f). Since the radial derivatives of @ can 
be large, we need to retain these terms in determining aue/as and au,/as in the 
tangential stress components. Thus, for example, we have 

Now the remaining 
and x and then the 

terms in rSe in (A 35) can be evaluated to O(1) by neglecting @ 
application of the boundary condition 7,e = 0 yields 

The boundary condition rs, = 0 a t  s = R is also satisfied to O(1) with the above 
expression for @ and therefore the toroidal field x does not contribute to this leading- 
order analysis. Now the normal stress balance a t  s = R gives 

(A 39) 
au 
as 

p = p g + ( 2 7 + V , 2 7 ) a + 2 p 4  

where p ,  is the amplitude of the pressure variation inside the gas bubble. Substituting 
(A 38) into (A 32) we obtain 

Decomposing the velocity and pressure fields in Legendre polynomials and combining 
the kinematic and normal stress conditions we obtain 

Since the velocity derivative in the above equation is multiplied by p,  the 
leading-order approximation for the normal stress balance is simply the inviscid 
approximation 

with f (0)  = l / w i  and f ( n )  = a*[n(n+ 1)-21 for n > 1.  At the next order, which is 
O(p*), the velocity to be used in the kinematic boundary condition is modified due 
to the poloidal field as given by (A 38) but, since the normal derivative of u8 is 
multiplied by p, only the leading-order estimate of the velocity as determined from 
the potential flow approximation is needed in its evaluation. The resulting boundary 
condition at the surface of the bubble therefore becomes 

p i m + f ( n ) R r g ) n m  = 2 i [ R 2 ~ + f ( n ) " ( " + l )  ( p o - R -  T l l n r n  , ( A 4 3 )  

where the derivatives of p n ,  are evaluated a t  s = R. The above condition then yields 
the O(p*) boundary condition for the viscous correction to pressure and its normal 
derivatives a t  the surface of the bubble. Thus, once again, p 2  is expressed in terms 
of multipoles a t  the centre of each bubble and then expanded in spherical harmonics 
around each bubble as in the inviscid case. The only difference is that  now the 
relation between the coefficients of the growing and decaying harmonics is established 
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through the use of (A 43). We shall omit further details now but quote some of the 
important results. If we write A:, = A,+i,u*Ag, where A, is obtained from the 
potential flow approximation (cf. (A 23)) and A,” is the viscous correction then 

O R3 5 3  1 [ s OS2 
R R2 - = -4ti 1+3to-+7t2-+21t3-+ ... . 

R 

The functions gI1 and gol that  appear in the calculation of Av may also be determined 
by the methods described here. In  particular, the method of successive approxi- 
mations yield 

1 1 [ s3 S6 
3R3 7R6 ... +12i,u* 1--+-+ ... , 

+...I.  (A46) 

Appendix B. The effect of buoyancy 
We shall assume that the gas-liquid mixture is contained in a large vessel so that 

v, = 0, (go), = PV, and {( 1 -9 )  v}, = -PV. The base flow due to buoyancy is assumed 
to be unaffected by the acoustics and given by the potential flow around the bubbles. 
Thus we assume that outside the bubble at xlr u1 is given by 

and that the density of the gas is negligible, in which case the pressure inside the gas 
is uniform. Now we proceed to evaluate the ensemble average of various terms in 
(3.86) and (3.87). The convective term in (3.87) yields 

0, = v$h, $h = p3v.vs-1, (B 1) 

{( 1 -9 )  v (Pu+ (all)+)}, = {( 1-9) ( v .  VG+ G.VU)}, 
= -pv. VG, + { (1 -9 )  ( 0 .  VG’ + G’ . VU)},, (B 2) 

where 6‘ = G - G o .  In  obtaining the last equality in (B 2), we have made use of the 
facts that {( 1-9) v},  = -pV and {( 1-9) Vu}, = 0. Now since the viscosity effects 
have been neglected, u+ v satisfies the potential flow equations, and we can express 
the disturbance velocity in terms of a velocity potential, i.e. G’ = Vv’. The last term 
in (B 2) then simplifies to 

{( 1 - 9)  ( v .  VG’ + li’ . Vv)}, = { (1 - 9)  V(V+. Vq’)}, 

=-”I n(V$h.VCp’),dS, (B 3) 
vb s-R 

where we have used the divergence theorem to convert the volume integral in the 
averaging to  the area integral on the surface of the bubble at xl. The quantity 
V(V$h- Vq’) decays as R6/s6 and hence the integral a t  infinity does not contribute to 
the average. The ensemble averages of the remaining terms are straightforward and 
the resulting averaged momentum and continuity equations are given by 

iiqL(G0-Piig)-pL v.vG,+v$, = (B 4) 

Piw -p,+V.G, = 0,  
YPe 

where jig is the amplitude of the pressure variation inside the bubble and ig is the 
amplitude of the velocity inside the bubble. 

Now we proceed to  determine the velocity field to leading order in /3 by neglecting 
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the pairwise interactions. The pressure inside the gas is uniform, and so the motion 
inside the bubble at x, is still given by (3.34). The pressure outside the bubble can 
be determined from the Bernoulli's equation, which yields 

Since the compressibility of the liquid is neglected, we shall assume that the velocity 
potential is given by (cf. $3.3) 

(B 7)  
where A, and A, are the strengths of the monopole and dipole, and q* = @Oe-ik.xl. 
The higher-order multipoles can be neglected when k is small and therefore they are 
not explicitly written in (B 7).  Also, we note for later use that 4, = -ikqI* and 
$, = - iwp,qI* to  this O( 1) approximation in P. The strengths of monopole and dipole 
can be determined from the boundary conditions at  the bubble surface. Combining 
the kinematic and normal stress conditions, we now have that 

$1 = -PL[i41+ (V@. v$411. 

@l = q ~ * (  1 - ik -  s) + A ,  8-l +Al  -Vs-l+ . . . , 

(B 6) 

$,ndS' = 0, (B 8) 

Substituting for the pressure from (B 6) into (B 8) and (B 9), and solving for the 
strengths of monopole and dipole, we obtain 

A0 - 4 q I *  imp*( -ik. V) 
R 
- - 

1 - w:( 1 + B2)-wE[l -w,"( 1 + B2)] ' 

where B = V/(Rw). It is easy to verify that the expressions for the strengths of 
monopole and dipole are in agreement with those derived in $3.1 (cf. (3.12) and 
(3.13)) when B = V = 0. Now the pressure and velocity inside the bubble can be 
readily related to A ,  and A, by means of 

$g = ____ SyPeA, and 4 g = i o + 2 ,  2A 
iwR3 R3 

so that all the terms in (B 4) and (B 5) can now be evaluated. Expressing q ~ *  and 
-ikqI* in terms of $, and fi,, and rearranging we finally arrive at the averaged 
momentum and continuity equations correct to O(P) : 

+V$$ = 0, V$$ 
3y*Pe [ 1 - w,"( 1 + B2)] 

iw/3$$ 
[ 1 - w,"( 1 +B2)]  y*Pe 

+v.;, = 0, 

where $$ = $, -pL i,. V is the modified pressure. Once again, these equations reduce 
to the averaged momentum and continuity equations derived in $ 3  when B = V = 0. 
Eliminating now $$ and i, from the above equations yields the following dispersion 
relation : 

k2 = PPL wz [i+--3p]. k -  V 
y*Pe [ 1 - w,"( 1 + B2)] w 

Thus we see that buoyancy affects the leading-order term in the dispersion relation 
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in two ways. It decreases the apparent natural frequency of the bubble by a factor 
( 1  +B2)i. More specifically, the factor 1/(  1 - w,") is now replaced by 1/( 1 - (1 +B2) w,"). 
This is not surprising since the base flow generated by the buoyancy increases the 
pressure around the bubble. In the experiments of Micaelli (1982), B was about 10, 
and so the apparent natural frequency was considerably larger than the natural 
frequency of the bubbles. However, w, was only about 0.03, so that this corresponds 
to an error of about 10%. For larger frequencies, of course, B = V/Rw also decreases 
and in fact for w comparable to the natural frequency, BE = pL P / ( 3 y * P e )  is indeed 
very small. Thus the actual shift in the resonance frequency due to buoyancy is 
small. 

The second effect of the buoyancy is the familiar Doppler shift due to a moving 
source. We find that the Doppler shift is primarily dependent on the average velocity 
of the bubble and not on the average velocity of the mixture. The latter is, of course, 
zero in the problem we have examined. 

The O(p2) term in (B 15) is, of course, not exact but from the analysis of $ 3  it is 
easily seen that the corrections are a t  least O(w,"). As mentioned earlier, however, the 
value of B is small whenever 0, is O( 1). On the other hand, in the limit of very small 
w,, for which the comparison with the experiments of Micaelli is made, the O($) 
coefficients in the averaged momentum equations will in general be affected so that 
the 0(/3) coefficient of A, will be a function of B and approach two different constants 
for the extreme values of B equal to 0 and co. The buoyancy also affects the 0(/3) 
coefficient of A, by modifying the conditional probability density function. 
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